login
A360471
E.g.f. satisfies A(x) = x * exp( 2*A(x) + x * exp(2*A(x)) ).
2
0, 1, 6, 75, 1476, 39805, 1366278, 56998179, 2800588808, 158420939193, 10140538486410, 724652822705119, 57187947315670284, 4939834587311520117, 463572330418586227790, 46965096302630022564315, 5108915146530700018466832, 593925863391217441843199089
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} k^(n-k) * (2*n)^(k-1) * binomial(n,k).
a(n) ~ 2^(n - 1/2) * s^n * n^(n-1) / (sqrt(2 + 1/s - 4*s) * (1 - 2*s)^n * exp(n*(1 - 2*s))), where s = 0.3875920123187127910093095185777835252050660050582... is the root of the equation 2*s*(1 + LambertW(s)) = 1. - Vaclav Kotesovec, Feb 17 2023
PROG
(PARI) a(n) = sum(k=1, n, k^(n-k)*(2*n)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 09 2023
STATUS
approved