login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184824
a(n) = n + floor(n*t) + floor(n/t) + floor(n/t^2), where t is the tetranacci constant.
4
2, 6, 9, 14, 17, 21, 24, 29, 32, 36, 39, 44, 47, 50, 54, 58, 61, 65, 69, 73, 76, 80, 84, 88, 91, 95, 100, 102, 106, 110, 114, 117, 121, 125, 129, 132, 136, 140, 144, 147, 152, 154, 158, 161, 166, 169, 173, 176, 181, 184, 188, 191, 196, 200, 203, 207, 210, 214, 217, 222, 225, 229, 232, 237, 240, 244, 248, 252, 255, 258, 262, 266, 269, 273, 277, 281, 284, 288, 292, 296, 300, 304, 307, 310, 314, 318, 322, 325, 329, 333, 337, 340, 345, 348, 352, 355, 359, 362, 366, 369, 374, 377, 381, 384, 389, 392, 396, 401, 404, 408
OFFSET
1,1
COMMENTS
This is one of four sequences that partition the positive integers.
Given t is the tetranacci constant, then the following sequences are disjoint:
. A184823(n) = n + [n/t] + [n/t^2] + [n/t^3],
. A184824(n) = n + [n*t] + [n/t] + [n/t^2],
. A184825(n) = n + [n*t] + [n*t^2] + [n/t],
. A184826(n) = n + [n*t] + [n*t^2] + [n*t^3], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.
FORMULA
Limit a(n)/n = t^2 = 3.7154951693276375317543272...
a(n) = n + floor(n*p/r) + floor(n*q/r) + floor(n*s/r), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.
EXAMPLE
Let t be the tetranacci constant, then t^2 = 1 + t + 1/t + 1/t^2 and:
t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
PROG
(PARI) {a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n/t)+floor(n/t^2)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 23 2011
STATUS
approved