Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Dec 16 2024 22:19:16
%S 2,6,9,14,17,21,24,29,32,36,39,44,47,50,54,58,61,65,69,73,76,80,84,88,
%T 91,95,100,102,106,110,114,117,121,125,129,132,136,140,144,147,152,
%U 154,158,161,166,169,173,176,181,184,188,191,196,200,203,207,210,214,217,222,225,229,232,237,240,244,248,252,255,258,262,266,269,273,277,281,284,288,292,296,300,304,307,310,314,318,322,325,329,333,337,340,345,348,352,355,359,362,366,369,374,377,381,384,389,392,396,401,404,408
%N a(n) = n + floor(n*t) + floor(n/t) + floor(n/t^2), where t is the tetranacci constant.
%C This is one of four sequences that partition the positive integers.
%C Given t is the tetranacci constant, then the following sequences are disjoint:
%C . A184823(n) = n + [n/t] + [n/t^2] + [n/t^3],
%C . A184824(n) = n + [n*t] + [n/t] + [n/t^2],
%C . A184825(n) = n + [n*t] + [n*t^2] + [n/t],
%C . A184826(n) = n + [n*t] + [n*t^2] + [n*t^3], where []=floor.
%C This is a special case of Clark Kimberling's results given in A184812.
%F Limit a(n)/n = t^2 = 3.7154951693276375317543272...
%F a(n) = n + floor(n*p/r) + floor(n*q/r) + floor(n*s/r), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.
%e Let t be the tetranacci constant, then t^2 = 1 + t + 1/t + 1/t^2 and:
%e t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
%o (PARI) {a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n/t)+floor(n/t^2)}
%Y Cf. A184823, A184825, A184826; A184812, A086088.
%K nonn
%O 1,1
%A _Paul D. Hanna_, Jan 23 2011