

A184752


a(n) = largest k such that A014612(n+1) = A014612(n) + (A014612(n) mod k), or 0 if no such k exists.


4



0, 0, 16, 13, 26, 26, 18, 40, 43, 40, 48, 41, 60, 64, 66, 65, 74, 74, 64, 86, 97, 96, 99, 100, 106, 112, 115, 110, 123, 120, 122, 129, 146, 143, 152, 144, 163, 160, 169, 170, 170, 173, 168, 178, 184, 186, 185, 183, 202, 202, 214
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS



LINKS



EXAMPLE

For n = 1 we have A014612(1) = 8, A014612(2) = 12; there is no k such that 12  8 = 4 = (8 mod k), hence a(1) = 0.
For n = 3 we have A014612(3) = 18, A014612(4) = 20; 16 is the largest k such that 20  18 = 2 = (18 mod k), hence a(3) = 16.
For n = 21 we have A014612(21) = 98, A014612(22) = 99; 97 is the largest k such that 99  98 = 1 = (97 mod k), hence a(21) = 97.


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



