login
A114403
Triprime gaps. First differences of A014612.
24
4, 6, 2, 7, 1, 2, 12, 2, 1, 5, 2, 11, 3, 2, 2, 5, 1, 2, 14, 6, 1, 3, 3, 5, 4, 2, 1, 7, 1, 5, 8, 9, 1, 5, 1, 10, 1, 5, 1, 1, 2, 1, 7, 4, 2, 2, 5, 12, 5, 10, 8, 1, 5, 2, 4, 2, 1, 1, 9, 3, 3, 5, 2, 5, 2, 4, 3, 2, 1, 1, 4, 2, 18, 6, 2, 4, 3, 7, 1, 5, 5, 2, 9, 2, 1
OFFSET
1,1
FORMULA
a(n) = A014612(n+1) - A014612(n).
EXAMPLE
a(1) = 4 = 12-8 where 8 is the first triprime and 12 is the second.
a(2) = 6 = 18-12
a(3) = 2 = 20-18
a(4) = 7 = 27-20
MAPLE
is3Alm := proc(n::integer) local ifa, ex, i ; ifa := op(2, ifactors(n)) ; ex := 0 ; for i from 1 to nops(ifa) do ex := ex+ op(2, op(i, ifa)) ; od : if ex = 3 then RETURN(true) ; else RETURN(false) ; fi ; end: A014612 := proc(n::integer) local resul, i; i :=1; resul := 8 ; while i < n do resul := resul + 1 ; if is3Alm(resul) then i := i+1 ; fi ; od ; RETURN(resul) ; end: A114403 := proc(n::integer) RETURN(A014612(n+1)-A014612(n)) ; end: for n from 1 to 160 do printf("%d, ", A114403(n)) ; od: # R. J. Mathar, Apr 25 2006
MATHEMATICA
Differences[Select[Range[425], PrimeOmega[#] == 3 &]] (* Jayanta Basu, Jul 01 2013 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 25 2005
EXTENSIONS
Corrected and extended by R. J. Mathar, Apr 25 2006
STATUS
approved