The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184509 G.f.: A(x) = 1 + x*F(x)*G(x) where F(x) = A(x/F(x)) and G(x) = A(x*G(x)). 3
1, 1, 2, 5, 17, 78, 423, 2547, 16809, 119633, 904868, 7217525, 60369382, 526911858, 4781722888, 44992996528, 437927234508, 4400711725541, 45584253192633, 486049982786691, 5328493141214993, 59997231748407317, 693194446470892036 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. A(x), along with F(x) = A(x/F(x)) and G(x) = A(x*G(x)), satisfy:
* A(x/A(x)) = 1 + x*F(x/A(x)) since G(x/A(x)) = A(x);
* A(x*A(x)) = 1 + x*A(x)^2*G(x*A(x)) since F(x*A(x)) = A(x);
* A(x/F(x)^2) = 1 + x*F( x/F(x)^2 )/F(x) since F(x) = G(x/F(x)^2);
* A(x*G(x)^2) = 1 + x*G(x)^3*G( x*G(x)^2 ) since G(x) = F(x*G(x)^2).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 78*x^5 + 423*x^6 +...
The function F(x) = A(x/F(x)) is the g.f. of A184510 and begins:
F(x) = 1 + x + x^2 + x^3 + 4*x^4 + 22*x^5 + 103*x^6 + 565*x^7 + 3650*x^8 +...
The function G(x) = A(x*G(x)) is the g.f. of A184511 and begins:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 58*x^4 + 324*x^5 + 2016*x^6 + 13629*x^7 + 98644*x^8 +...
Related expansions:
A(x*A(x)) = 1 + x + 3*x^2 + 11*x^3 + 47*x^4 + 236*x^5 + 1365*x^6 + 8799*x^7 + 61770*x^8 +...
A(x/A(x)) = 1 + x + x^2 - 2*x^4 - 2*x^5 - 4*x^6 - 55*x^7 - 281*x^8 - 1545*x^9 -...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x*serreverse(x/A)/serreverse(x*A)+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A330046 A343848 A199164 * A020096 A362109 A187245
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 16 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)