login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184508
G.f. satisfies: A(x) = B(x*A(x)), where B(x) is the g.f. of A184506.
2
1, 1, 1, 3, 6, 33, 79, 661, 1564, 19357, 39568, 751741, 1134328, 36687892, 30140408, 2174316050, 65676634, 152761870350, -126456152854, 12495122715428, -21554431449186, 1173014849466128, -3099148178903788, 124924998253897302, -445406039525657880
OFFSET
0,4
COMMENTS
G.f. B(x) of A184506 satisfies: B(x) = 1 + x*A(x)*F(x) where F(x) = B(x/F(x)) = A(x/F(x)^2) is the g.f. of A184507 and A(x) is the g.f. of this sequence.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 6*x^4 + 33*x^5 + 79*x^6 + 661*x^7 +...
Related expansions.
A(x) = B(x*A(x)) where B(x) = A(x/B(x)) is the g.f. of A184506:
B(x) = 1 + x + 2*x^3 - 3*x^4 + 27*x^5 - 91*x^6 + 723*x^7 -+...
Also, A(x) = F(x*A(x)^2) where F(x) = A(x/F(x)^2) is the g.f. of A184507:
F(x) = 1 + x - x^2 + 4*x^3 - 16*x^4 + 86*x^5 - 482*x^6 + 3074*x^7 +...
PROG
(PARI) {a(n)=local(A=1, F=1+x+x*O(x^n)); for(i=1, n, A=1/x*serreverse(x/F); F=1+A*serreverse(x*F) + x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A284633 A192166 A297444 * A101142 A298679 A261885
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 22 2012
STATUS
approved