login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184506
G.f.: A(x) = 1 + x*G(x)/F(x) where F(x) = A(x/F(x)) and G(x) = A(x*G(x)).
3
1, 1, 0, 2, -3, 27, -91, 723, -3555, 28338, -174027, 1440582, -10280631, 89422482, -713833016, 6548902473, -57199453969, 553760916426, -5219453249126, 53271930913793, -536862065044303, 5767357558711960, -61733919421613462
OFFSET
0,4
FORMULA
G.f. A(x), along with F(x) = A(x/F(x)) and G(x) = A(x*G(x)), satisfy:
* A(x/A(x)) = 1 + x/F(x/A(x)) since G(x/A(x)) = A(x);
* A(x*A(x)) = 1 + x*G(x*A(x)) since F(x*A(x)) = A(x);
* A(x/F(x)^2) = 1 + x/[F(x)*F(x/F(x)^2)] since F(x) = G(x/F(x)^2);
* A(x*G(x)^2) = 1 + x * G(x)*G(x*G(x)^2) since G(x) = F(x*G(x)^2).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^3 - 3*x^4 + 27*x^5 - 91*x^6 + 723*x^7 -+...
The function F(x) = A(x/F(x)) is the g.f. of A184507 and begins:
F(x) = 1 + x - x^2 + 4*x^3 - 16*x^4 + 86*x^5 - 482*x^6 + 3074*x^7 - 20478*x^8 +-...
The function G(x) = A(x*G(x)) is the g.f. of A184508 and begins:
G(x) = 1 + x + x^2 + 3*x^3 + 6*x^4 + 33*x^5 + 79*x^6 + 661*x^7 + 1564*x^8 +...
Related expansions:
A(x*A(x)) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 18*x^5 + 67*x^6 + 326*x^7 + 1503*x^8 +...
A(x/A(x)) = 1 + x - x^2 + 3*x^3 - 12*x^4 + 59*x^5 - 328*x^6 + 2021*x^7 - 13432*x^8 +-...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+1/x*serreverse(x/A)*serreverse(x*A)+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 16 2011
STATUS
approved