OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 77*x^5 + 448*x^6 +...
where
log(A(x)) = x/(1-x) + (x^2/2)/(1-2^2*x+x^2) + (x^3/3)/(1-3^2*x+3^2*x^2-x^3) + (x^4/4)/(1-4^2*x+6^2*x^2-4^2*x^3+x^4) + (x^5/5)/(1-5^2*x+10^2*x^2-10^2*x^3+5^2*x^4-x^5) +...
MATHEMATICA
nmax = 25; CoefficientList[Series[Exp[Sum[x^k/k / Sum[Binomial[k, j]^2 * (-x)^j, {j, 0, k}], {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 23 2025 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m/sum(k=0, m, binomial(m, k)^2*(-x)^k+x*O(x^n))))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Nov 03 2011
STATUS
approved