login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199163
E.g.f.: Product_{n>=1} 1/(1 - x^n/n!)^(2^n).
1
1, 2, 10, 56, 404, 3272, 30688, 316304, 3609656, 44624624, 597131600, 8555752064, 130941724064, 2127005759296, 36577172243776, 663151898857856, 12646212723268576, 252922802230850496, 5294480128736395456, 115747660924409952512, 2638244919080808844544
OFFSET
0,2
COMMENTS
Compare to the e.g.f. of A005651 (sum of multinomial coefficients): Product_{n>=1} 1/(1 - x^n/n!).
FORMULA
a(n) ~ c * n! * n, where c = Product_{k>=2} (1 - 1/k!)^(2^k) = 200.80872040834836274... - Vaclav Kotesovec, Jul 21 2019
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 10*x^2/2! + 56*x^3/3! + 404*x^4/4! + 3272*x^5/5! +...
where
A(x) = 1/((1-x)^2*(1-x^2/2!)^4*(1-x^3/3!)^8*(1-x^4/4!)^16*(1-x^5/5!)^32*...).
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1 - x^k/k!)^(2^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 21 2019 *)
PROG
(PARI) {a(n)=n!*polcoeff(prod(k=1, n, 1/(1-x^k/k!+x*O(x^n))^(2^k)), n)}
CROSSREFS
Cf. A005651.
Sequence in context: A336961 A265954 A093303 * A303830 A235321 A364306
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 09 2011
STATUS
approved