login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235321
E.g.f. satisfies: A'(x) = A(x)^4 * A(-x)^2 with A(0) = 1.
2
1, 1, 2, 10, 56, 496, 4592, 58240, 753536, 12428416, 206700032, 4194910720, 85291222016, 2054623707136, 49390297628672, 1376983620812800, 38210541166493696, 1209980100295622656, 38070418025153626112, 1349585751030491054080, 47479274652991633227776
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies: 3 - 15*A(x) + 20*A(x)^2 - (8 - 15*x)*A(x)^5 = 0.
E.g.f.: 1/(1 - Series_Reversion( Integral (1-x^2)^2 dx )).
E.g.f.: 1 + Series_Reversion( Integral (1+2*x)^2/(1+x)^6 dx ).
Recurrence: 4096*(100*n - 341)*a(n) = 30720*(25*n - 83)*a(n-1) + 640*(4500*n^3 - 35595*n^2 + 92875*n - 81419)*a(n-2) - 1800*(1500*n^3 - 13480*n^2 + 40050*n - 39221)*a(n-3) - 81*(5*n - 19)*(5*n - 18)*(5*n - 17)*(5*n - 16)*(100*n - 241)*a(n-4). - Vaclav Kotesovec, Jan 28 2014
a(n) ~ n! * (5/2)^(1/3) * (15/8)^n / (GAMMA(1/3) * n^(2/3)). - Vaclav Kotesovec, Jan 28 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 10*x^3/3! + 56*x^4/4! + 496*x^5/5! +...
Related series.
A(x)^2 = 1 + 2*x + 6*x^2/2! + 32*x^3/3! + 216*x^4/4! + 1952*x^5/5! +...
A(x)^4 = 1 + 4*x + 20*x^2/2! + 136*x^3/3! + 1160*x^4/4! + 12064*x^5/5! +...
A(x)^5 = 1 + 5*x + 30*x^2/2! + 230*x^3/3! + 2160*x^4/4! + 24200*x^5/5! +...
where 3 - 15*A(x) + 20*A(x)^2 = (8 - 15*x)*A(x)^5.
Note that 1 - 1/A(x) is an odd function that begins:
1 - 1/A(x) = x + 4*x^3/3! + 136*x^5/5! + 12544*x^7/7! + 2240896*x^9/9! +...
where Series_Reversion(1 - 1/A(x)) = x - 2*x^3/3 + x^5/5.
MATHEMATICA
CoefficientList[1/(1 - InverseSeries[Series[x - 2*x^3/3 + x^5/5, {x, 0, 20}], x]), x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 28 2014 *)
PROG
(PARI) /* By definition, A'(x) = A(x)^4 * A(-x)^2: */
{a(n)=local(A=1); for(i=0, n, A=1+intformal(A^4*subst(A, x, -x)^2 +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By equation: 3 - 15*A(x) + 20*A(x)^2 - (8 - 15*x)*A(x)^5 = 0 */
{a(n)=local(A=1); for(i=0, n, A=(3+20*A^2-(8-15*x)*A^5)/15 +x*O(x^n)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* E.g.f. 1/(1 - Series_Reversion(Integral (1-x^2)^2 dx)): */
{a(n)=local(A=1); A=1/(1-serreverse(x-2*x^3/3+x^5/5 +x^2*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* E.g.f. 1 + Series_Reversion(Integral (1+2*x)^2/(1+x)^6 dx): */
{a(n)=local(A=1); A=1+serreverse( intformal((1+2*x)^2/(1+x +x^2*O(x^n))^6 )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A235322.
Sequence in context: A093303 A199163 A303830 * A364306 A371770 A369487
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2014
STATUS
approved