login
A235319
T(n,k) is the number of (n+1) X (k+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 7 (constant-stress 1 X 1 tilings).
9
112, 392, 392, 1120, 1120, 1120, 3920, 2744, 2744, 3920, 11776, 8392, 5968, 8392, 11776, 41216, 22568, 16352, 16352, 22568, 41216, 128128, 71896, 40144, 40144, 40144, 71896, 128128, 448448, 206360, 118160, 89600, 89600, 118160, 206360
OFFSET
1,1
COMMENTS
Table starts
112 392 1120 3920 11776 41216 128128 448448
392 1120 2744 8392 22568 71896 206360 675064
1120 2744 5968 16352 40144 118160 316912 978320
3920 8392 16352 40144 89600 241600 598976 1723456
11776 22568 40144 89600 184144 459536 1062832 2873552
41216 71896 118160 241600 459536 1062832 2291696 5805424
128128 206360 316912 598976 1062832 2291696 4632208 11046512
448448 675064 978320 1723456 2873552 5805424 11046512 24862768
1426432 2026472 2793040 4616960 7275856 13828496 24862768 52954448
4992512 6751000 8912144 13917952 20859728 37480816 63985520 129456304
Empirical: T(n,k) is the number of (n+1) X (k+1) 0..5+i arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5+2*i (constant-stress 1 X 1 tilings), for i=1..3(..?).
LINKS
FORMULA
Empirical for column k (the k=2..6 recurrence also works for k=1; apparently all rows and columns satisfy the same order 18 recurrence):
k=1: a(n) = 28*a(n-2) - 252*a(n-4) + 720*a(n-6).
k=2..6: [same order 18 recurrence]
EXAMPLE
Some solutions for n=4, k=4:
5 4 6 1 5 2 4 2 4 2 1 6 2 4 2 3 0 3 0 3
0 6 1 3 0 6 1 6 1 6 4 2 5 0 5 1 5 1 5 1
4 3 5 0 4 3 5 3 5 3 0 5 1 3 1 5 2 5 2 5
0 6 1 3 0 5 0 5 0 5 4 2 5 0 5 2 6 2 6 2
4 3 5 0 4 2 4 2 4 2 1 6 2 4 2 3 0 3 0 3
CROSSREFS
Sequence in context: A352585 A233892 A233885 * A203923 A235312 A203916
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 05 2014
STATUS
approved