

A183100


a(n) = sum of divisors d of n which are either 1 or of the form Product_(i) (p_i^e_i) where the e_i are <= 1.


4



1, 3, 4, 3, 6, 12, 8, 3, 4, 18, 12, 24, 14, 24, 24, 3, 18, 30, 20, 38, 32, 36, 24, 48, 6, 42, 4, 52, 30, 72, 32, 3, 48, 54, 48, 42, 38, 60, 56, 78, 42, 96, 44, 80, 69, 72, 48, 96, 8, 68, 72, 94, 54, 84, 72, 108, 80, 90, 60, 164, 62, 96, 95, 3, 84, 144, 68, 122, 96, 144, 72, 66, 74, 114, 99, 136, 96, 168, 80, 158, 4, 126, 84, 220, 108, 132, 120, 168, 90, 225, 112, 164, 128, 144, 120, 192, 98, 122, 147, 88
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) = sum of nonpowerful divisors d of n where powerful numbers are numbers from A001694(m) for m >=1.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16385
Index entries for sequences related to sums of divisors


FORMULA

a(n) = A000203(n)  A183099(n) = A183098(n) + 1.
a(1) = 1, a(p) = p+1, a(pq) = (p+1)*(q+1), a(pq...z) = (p+1)*(q+1)*…*(z+1), a(p^k) = p+1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.


EXAMPLE

For n = 12, set of such divisors is {1, 2, 3, 6, 12}; a(12) = 1+2+3+6+12 = 24.


PROG

(PARI) A183100(n) = (1 + sumdiv(n, d, d*(!ispowerful(d)))); \\ Antti Karttunen, Oct 07 2017


CROSSREFS

Cf. A000203, A001694, A183098, A183099.
Sequence in context: A048250 A323363 A073181 * A046897 A109506 A000113
Adjacent sequences: A183097 A183098 A183099 * A183101 A183102 A183103


KEYWORD

nonn


AUTHOR

Jaroslav Krizek, Dec 25 2010


STATUS

approved



