login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182796
Number of n-colorings of the 11 X 11 X 11 triangular grid.
12
0, 0, 0, 6, 894839431299072, 2669547726944484045356192220, 3453061562403499837458734621479403520, 32534816367748624110581496623513688165161250, 13865643738325095813931525301368809527451487174656, 719243085838104840090332816450418348485262159478161912
OFFSET
0,4
COMMENTS
The 11 X 11 X 11 triangular grid has 11 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 66 vertices and 165 edges altogether.
LINKS
Index entries for linear recurrences with constant coefficients, signature (67, -2211, 47905, -766480, 9657648, -99795696, 869648208, -6522361560, 42757703560, -247994680648, 1285063345176, -5996962277488, 25371763481680, -97862516286480, 345780890878896, -1123787895356412, 3371363686069236, -9364899127970100, 24151581961607100, -57963796707857040, 129728497393775280, -271250494550621040, 530707489338171600, -972963730453314600, 1673497616379701112, -2703342303382594104, 4105075349580976232, -5864393356544251760, 7886597962249166160, -9989690752182277136, 11923179284862717872, -13413576695470557606, 14226520737620288370, -14226520737620288370, 13413576695470557606, -11923179284862717872, 9989690752182277136, -7886597962249166160, 5864393356544251760, -4105075349580976232, 2703342303382594104, -1673497616379701112, 972963730453314600, -530707489338171600, 271250494550621040, -129728497393775280, 57963796707857040, -24151581961607100, 9364899127970100, -3371363686069236, 1123787895356412, -345780890878896, 97862516286480, -25371763481680, 5996962277488, -1285063345176, 247994680648, -42757703560, 6522361560, -869648208, 99795696, -9657648, 766480, -47905, 2211, -67, 1).
FORMULA
a(n) = n^66 -165*n^65 + ... (see Maple program).
MAPLE
a:= n-> n^66 -165*n^65 +13430*n^64 -718830*n^63 +28457415*n^62 -888623847*n^61 +22794225600*n^60 -493911980736*n^59 +9226616834936*n^58 -150915853835753*n^57 +2187810200892517*n^56 -28386731631190882*n^55 +332304034158619019*n^54 -3533226535570171926*n^53 +34313909582632869954*n^52 -305856530408381979601*n^51 +2512508789703297897295*n^50 -19089408783899171447224*n^49 +134562619568457264195163*n^48
-882441314560383975170374*n^47 +5396523102436821589146163*n^46 -30840476493483204890335403*n^45 +165009710808610594759616084*n^44 -827914124972290242846288614*n^43 +3900932089129512379033249682*n^42 -17282292209365903724659563631*n^41 +72070311947250436580694965993*n^40 -283166145176179540399078790292*n^39 +1049069241527084408399974095750*n^38 -3667220337345620153484655187124*n^37
+12102613021744672034697503592240*n^36 -37724138339405445177425698342523*n^35 +111095760575994820098618163390207*n^34 -309176068977052084408729303614893*n^33 +813185481965001199040935097964080*n^32 -2021374436814237148012243424806903*n^31 +4748186561462311698450896683155065*n^30 -10537422803434213322732080981201161*n^29 +22086052643134325938087794218181024*n^28
-43699620756746667796067005960087177*n^27 +81574844104346290652888156183655294*n^26 -143561350684851401447755384461673931*n^25 +237980280375008015726322556682052877*n^24 -371206816676060485457461990985198956*n^23 +544170012342342058668596490042636752*n^22 -748657464524219415245225971665770397*n^21 +965053026942268357862711436169935542*n^20 -1163371795450218690971885318270471694*n^19
+1308697520027710079307786302348771339*n^18 -1370319041971898252774123231153226918*n^17 +1331690339384350939067376866415236621*n^16 -1197068569703716329028295302490292938*n^15 +991428141596470240524919848774681738*n^14 -753054945934102362521837371999863872*n^13 +521731607147367465356546993487963024*n^12 -327563800253835254381288187488707872*n^11 +184908996556501805959894731292086336*n^10
-92949398227453879699243734196772032*n^9 +41108507052047410428558518243062272*n^8 -15751620136596962785464735723309056*n^7 +5123987337580699585298644858115072*n^6 -1376145015411556644420090237028352*n^5 +292997762191812894902503923634176*n^4 -46372215676408895763951507652608*n^3 +4850060647318928018465677025280*n^2 -251433237032021534887746912256*n:
seq(a(n), n=0..12);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 02 2010
STATUS
approved