OFFSET
0,4
COMMENTS
The 11 X 11 X 11 triangular grid has 11 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 66 vertices and 165 edges altogether.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Wikipedia, Chromatic polynomial
Wikipedia, Triangular grid graph
Index entries for linear recurrences with constant coefficients, signature (67, -2211, 47905, -766480, 9657648, -99795696, 869648208, -6522361560, 42757703560, -247994680648, 1285063345176, -5996962277488, 25371763481680, -97862516286480, 345780890878896, -1123787895356412, 3371363686069236, -9364899127970100, 24151581961607100, -57963796707857040, 129728497393775280, -271250494550621040, 530707489338171600, -972963730453314600, 1673497616379701112, -2703342303382594104, 4105075349580976232, -5864393356544251760, 7886597962249166160, -9989690752182277136, 11923179284862717872, -13413576695470557606, 14226520737620288370, -14226520737620288370, 13413576695470557606, -11923179284862717872, 9989690752182277136, -7886597962249166160, 5864393356544251760, -4105075349580976232, 2703342303382594104, -1673497616379701112, 972963730453314600, -530707489338171600, 271250494550621040, -129728497393775280, 57963796707857040, -24151581961607100, 9364899127970100, -3371363686069236, 1123787895356412, -345780890878896, 97862516286480, -25371763481680, 5996962277488, -1285063345176, 247994680648, -42757703560, 6522361560, -869648208, 99795696, -9657648, 766480, -47905, 2211, -67, 1).
FORMULA
a(n) = n^66 -165*n^65 + ... (see Maple program).
MAPLE
a:= n-> n^66 -165*n^65 +13430*n^64 -718830*n^63 +28457415*n^62 -888623847*n^61 +22794225600*n^60 -493911980736*n^59 +9226616834936*n^58 -150915853835753*n^57 +2187810200892517*n^56 -28386731631190882*n^55 +332304034158619019*n^54 -3533226535570171926*n^53 +34313909582632869954*n^52 -305856530408381979601*n^51 +2512508789703297897295*n^50 -19089408783899171447224*n^49 +134562619568457264195163*n^48
-882441314560383975170374*n^47 +5396523102436821589146163*n^46 -30840476493483204890335403*n^45 +165009710808610594759616084*n^44 -827914124972290242846288614*n^43 +3900932089129512379033249682*n^42 -17282292209365903724659563631*n^41 +72070311947250436580694965993*n^40 -283166145176179540399078790292*n^39 +1049069241527084408399974095750*n^38 -3667220337345620153484655187124*n^37
+12102613021744672034697503592240*n^36 -37724138339405445177425698342523*n^35 +111095760575994820098618163390207*n^34 -309176068977052084408729303614893*n^33 +813185481965001199040935097964080*n^32 -2021374436814237148012243424806903*n^31 +4748186561462311698450896683155065*n^30 -10537422803434213322732080981201161*n^29 +22086052643134325938087794218181024*n^28
-43699620756746667796067005960087177*n^27 +81574844104346290652888156183655294*n^26 -143561350684851401447755384461673931*n^25 +237980280375008015726322556682052877*n^24 -371206816676060485457461990985198956*n^23 +544170012342342058668596490042636752*n^22 -748657464524219415245225971665770397*n^21 +965053026942268357862711436169935542*n^20 -1163371795450218690971885318270471694*n^19
+1308697520027710079307786302348771339*n^18 -1370319041971898252774123231153226918*n^17 +1331690339384350939067376866415236621*n^16 -1197068569703716329028295302490292938*n^15 +991428141596470240524919848774681738*n^14 -753054945934102362521837371999863872*n^13 +521731607147367465356546993487963024*n^12 -327563800253835254381288187488707872*n^11 +184908996556501805959894731292086336*n^10
-92949398227453879699243734196772032*n^9 +41108507052047410428558518243062272*n^8 -15751620136596962785464735723309056*n^7 +5123987337580699585298644858115072*n^6 -1376145015411556644420090237028352*n^5 +292997762191812894902503923634176*n^4 -46372215676408895763951507652608*n^3 +4850060647318928018465677025280*n^2 -251433237032021534887746912256*n:
seq(a(n), n=0..12);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 02 2010
STATUS
approved