login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-colorings of the 11 X 11 X 11 triangular grid.
12

%I #22 Jan 21 2024 11:58:31

%S 0,0,0,6,894839431299072,2669547726944484045356192220,

%T 3453061562403499837458734621479403520,

%U 32534816367748624110581496623513688165161250,13865643738325095813931525301368809527451487174656,719243085838104840090332816450418348485262159478161912

%N Number of n-colorings of the 11 X 11 X 11 triangular grid.

%C The 11 X 11 X 11 triangular grid has 11 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 66 vertices and 165 edges altogether.

%H Alois P. Heinz, <a href="/A182796/b182796.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_graph#Other_kinds">Triangular grid graph</a>

%H <a href="/index/Rec#order_67">Index entries for linear recurrences with constant coefficients</a>, signature (67, -2211, 47905, -766480, 9657648, -99795696, 869648208, -6522361560, 42757703560, -247994680648, 1285063345176, -5996962277488, 25371763481680, -97862516286480, 345780890878896, -1123787895356412, 3371363686069236, -9364899127970100, 24151581961607100, -57963796707857040, 129728497393775280, -271250494550621040, 530707489338171600, -972963730453314600, 1673497616379701112, -2703342303382594104, 4105075349580976232, -5864393356544251760, 7886597962249166160, -9989690752182277136, 11923179284862717872, -13413576695470557606, 14226520737620288370, -14226520737620288370, 13413576695470557606, -11923179284862717872, 9989690752182277136, -7886597962249166160, 5864393356544251760, -4105075349580976232, 2703342303382594104, -1673497616379701112, 972963730453314600, -530707489338171600, 271250494550621040, -129728497393775280, 57963796707857040, -24151581961607100, 9364899127970100, -3371363686069236, 1123787895356412, -345780890878896, 97862516286480, -25371763481680, 5996962277488, -1285063345176, 247994680648, -42757703560, 6522361560, -869648208, 99795696, -9657648, 766480, -47905, 2211, -67, 1).

%F a(n) = n^66 -165*n^65 + ... (see Maple program).

%p a:= n-> n^66 -165*n^65 +13430*n^64 -718830*n^63 +28457415*n^62 -888623847*n^61 +22794225600*n^60 -493911980736*n^59 +9226616834936*n^58 -150915853835753*n^57 +2187810200892517*n^56 -28386731631190882*n^55 +332304034158619019*n^54 -3533226535570171926*n^53 +34313909582632869954*n^52 -305856530408381979601*n^51 +2512508789703297897295*n^50 -19089408783899171447224*n^49 +134562619568457264195163*n^48

%p -882441314560383975170374*n^47 +5396523102436821589146163*n^46 -30840476493483204890335403*n^45 +165009710808610594759616084*n^44 -827914124972290242846288614*n^43 +3900932089129512379033249682*n^42 -17282292209365903724659563631*n^41 +72070311947250436580694965993*n^40 -283166145176179540399078790292*n^39 +1049069241527084408399974095750*n^38 -3667220337345620153484655187124*n^37

%p +12102613021744672034697503592240*n^36 -37724138339405445177425698342523*n^35 +111095760575994820098618163390207*n^34 -309176068977052084408729303614893*n^33 +813185481965001199040935097964080*n^32 -2021374436814237148012243424806903*n^31 +4748186561462311698450896683155065*n^30 -10537422803434213322732080981201161*n^29 +22086052643134325938087794218181024*n^28

%p -43699620756746667796067005960087177*n^27 +81574844104346290652888156183655294*n^26 -143561350684851401447755384461673931*n^25 +237980280375008015726322556682052877*n^24 -371206816676060485457461990985198956*n^23 +544170012342342058668596490042636752*n^22 -748657464524219415245225971665770397*n^21 +965053026942268357862711436169935542*n^20 -1163371795450218690971885318270471694*n^19

%p +1308697520027710079307786302348771339*n^18 -1370319041971898252774123231153226918*n^17 +1331690339384350939067376866415236621*n^16 -1197068569703716329028295302490292938*n^15 +991428141596470240524919848774681738*n^14 -753054945934102362521837371999863872*n^13 +521731607147367465356546993487963024*n^12 -327563800253835254381288187488707872*n^11 +184908996556501805959894731292086336*n^10

%p -92949398227453879699243734196772032*n^9 +41108507052047410428558518243062272*n^8 -15751620136596962785464735723309056*n^7 +5123987337580699585298644858115072*n^6 -1376145015411556644420090237028352*n^5 +292997762191812894902503923634176*n^4 -46372215676408895763951507652608*n^3 +4850060647318928018465677025280*n^2 -251433237032021534887746912256*n:

%p seq(a(n), n=0..12);

%Y 11th column of A182797. Cf. A178435, A182798, A182788, A182789, A182790, A182791, A182792, A182793, A182794, A182795.

%K nonn,easy

%O 0,4

%A _Alois P. Heinz_, Dec 02 2010