login
A182789
Number of n-colorings of the 4 X 4 X 4 triangular grid.
12
0, 0, 0, 6, 2112, 98820, 1574400, 13676250, 80631936, 363204072, 1342218240, 4261697550, 12000120000, 30653510316, 72237215232, 159067919010, 330577363200, 653537970000, 1236951760896, 2253171240342, 3967187906880, 6776444390100, 11264003520000, 18268445544426
OFFSET
0,4
COMMENTS
The 4 X 4 X 4 triangular grid has 4 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 10 vertices and 18 edges altogether.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = n*(n-1)*(n-2)^4*(n^4-9*n^3+31*n^2-49*n+31).
G.f.: -6*x^3*(3267*x^7 +51359*x^6 +195679*x^5 +241075*x^4 +100425*x^3 +12653*x^2 +341*x +1) / (x -1)^11. - Colin Barker, Oct 01 2014
MAPLE
a:= n-> n^10 -18*n^9 +144*n^8 -672*n^7 +2016*n^6 -4031*n^5 +5368*n^4 -4584*n^3 +2272*n^2 -496*n:
seq(a(n), n=0..30);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 02 2010
STATUS
approved