login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-colorings of the 4 X 4 X 4 triangular grid.
12

%I #20 Aug 01 2023 14:35:57

%S 0,0,0,6,2112,98820,1574400,13676250,80631936,363204072,1342218240,

%T 4261697550,12000120000,30653510316,72237215232,159067919010,

%U 330577363200,653537970000,1236951760896,2253171240342,3967187906880,6776444390100,11264003520000,18268445544426

%N Number of n-colorings of the 4 X 4 X 4 triangular grid.

%C The 4 X 4 X 4 triangular grid has 4 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 10 vertices and 18 edges altogether.

%H Alois P. Heinz, <a href="/A182789/b182789.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic polynomial</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_graph#Other_kinds">Triangular grid graph</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F a(n) = n*(n-1)*(n-2)^4*(n^4-9*n^3+31*n^2-49*n+31).

%F G.f.: -6*x^3*(3267*x^7 +51359*x^6 +195679*x^5 +241075*x^4 +100425*x^3 +12653*x^2 +341*x +1) / (x -1)^11. - _Colin Barker_, Oct 01 2014

%p a:= n-> n^10 -18*n^9 +144*n^8 -672*n^7 +2016*n^6 -4031*n^5 +5368*n^4 -4584*n^3 +2272*n^2 -496*n:

%p seq(a(n), n=0..30);

%Y Column k=4 of A182797.

%Y Cf. A178435, A182798, A182788, A182790, A182791, A182792, A182793, A182794, A182795, A182796.

%K nonn,easy

%O 0,4

%A _Alois P. Heinz_, Dec 02 2010