OFFSET
0,4
COMMENTS
The 10 X 10 X 10 triangular grid has 10 rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has 55 vertices and 135 edges altogether.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Wikipedia, Chromatic polynomial
Wikipedia, Triangular grid graph
Index entries for linear recurrences with constant coefficients, signature (56, -1540, 27720, -367290, 3819816, -32468436, 231917400, -1420494075, 7575968400, -35607051480, 148902215280, -558383307300, 1889912732400, -5804731963800, 16253249498640, -41648951840265, 97997533741800, -212327989773900, 424655979547800, -785613562163430, 1346766106565880, -2142582442263900, 3167295784216200, -4355031703297275, 5574440580220512, -6646448384109072, 7384942649010080, -7648690600760440, 7384942649010080, -6646448384109072, 5574440580220512, -4355031703297275, 3167295784216200, -2142582442263900, 1346766106565880, -785613562163430, 424655979547800, -212327989773900, 97997533741800, -41648951840265, 16253249498640, -5804731963800, 1889912732400, -558383307300, 148902215280, -35607051480, 7575968400, -1420494075, 231917400, -32468436, 3819816, -367290, 27720, -1540, 56, -1).
FORMULA
a(n) = n^55 -135*n^54 + ... (see Maple program).
MAPLE
a:= n-> n^55 -135*n^54 +8964*n^53 -390222*n^52 +12525057*n^51 -316076903*n^50 +6530286070*n^49 -113573987769*n^48 +1696787220520*n^47 -22113112510550*n^46 +254428951045842*n^45 -2609511250718613*n^44 +24045856082285419*n^43 -200371113856491240*n^42 +1518133675627952270*n^41 -10506651071221868153*n^40 +66680463251797921915*n^39 -389373183471975572302*n^38 +2098028797385404193010*n^37
-10456871082871436486097*n^36 +48311408769374448761586*n^35 -207268123118278617037243*n^34 +827002152243388922174239*n^33 -3072694198727638003487979*n^32 +10641864949286796056022377*n^31 -34383949683339954923684782*n^30 +103704885062207595279156312*n^29 -292098504456226533053440510*n^28 +768501708532085822533190556*n^27 -1888698433570434475839725929*n^26 +4335279422341414825800378209*n^25
-9290907905051445440799000716*n^24 +18580084162229028469273798451*n^23 -34646102938311786771803477712*n^22 +60179271229381177090538625964*n^21 -97248893234106206859587981511*n^20 +145984266730291101055714541723*n^19 -203195282517216004808829603690*n^18 +261670683045031491886557091942*n^17 -310956138275834795608083550274*n^16 +339941943100528554861813262560*n^15
-340628682378318048979653175381*n^14 +311484260127833509262781795600*n^13 -258586709722348835998646850788*n^12 +193670730551369756737363762352*n^11 -129863868693889627423240097464*n^10 +77228998619164716149657770512*n^9 -40252487790410927197535447840*n^8 +18109784947870880558334595968*n^7 -6892748007729626216676319168*n^6 +2158618972888431826460898944*n^5 -534180587663008964293559296*n^4
+97953970795833012084624384*n^3 -11833494445627750018634752*n^2 +706434229524151535286272*n: seq(a(n), n=0..12);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 02 2010
STATUS
approved