login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182534
Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.
0
1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
OFFSET
1,3
COMMENTS
The (i,j)-entry of the array is the coefficient of the Euler-Mascheroni constant in: -2^(i+2j-1)/Pi*int(log(x)*cos(x)^i*sin(x)^(2j-1)/x, x=0..infinity); see Mathematica code below.
First row: A000108.
Second row: -A002420.
Third row: A007054.
Fourth row: A002421.
Fifth row: A007272.
Sixth row: -A002422.
Eighth row: A002423.
First column: A001405.
Second column: A089408.
Odd entries on main diagonal: A126596.
EXAMPLE
Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1 1 2 5 14 42 132 429 ... |
| 2 2 4 10 28 84 264 858 ... |
| 3 2 3 6 14 36 99 286 ... |
| 6 4 6 12 28 72 198 572 ... |
| 10 5 6 10 20 45 110 286 ... |
| 20 10 12 20 40 90 220 572 ... |
| 35 14 14 20 35 70 154 364 ... |
| 70 28 28 40 70 140 308 728 ... |
| ... ... ... ... ... ... ... ... ... |
MATHEMATICA
A[a_, b_] :=
A[a, b] =
Array[Coefficient[
Integrate[
Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
A[11, 11];
Print[A[11, 11] // MatrixForm];
Table2 = {};
k = 1;
While[k < 11, Table1 = {};
i = 1;
j = k;
While[0 < j,
AppendTo[Table1,
First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
j = j - 1;
i = i + 1];
AppendTo[Table2, Table1];
k++];
Print[Flatten[Table2]]
KEYWORD
nonn,tabl
AUTHOR
John M. Campbell, May 05 2012
STATUS
approved