The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181926 Diagonal sums of Fibonomial triangle A010048. 4
1, 1, 2, 2, 4, 6, 13, 27, 70, 191, 609, 2130, 8526, 38156, 194000, 1109673, 7176149, 52238676, 429004471, 3970438003, 41454181730, 488046132076, 6482590679282, 97134793638750, 1641654359781521, 31285014253070731, 672372121341768918, 16299021330860540657 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Cf. A000045 (Fibonacci) as diagonal sums of A007318 (Pascal's Triangle). For Fibonacci numbers, the ratio A000045(i+1)/A000045(i) approaches the golden ratio (1+sqrt(5))/2 as i increases. For this sequence, it appears that (a(i+5)/a(i+4))/(a(i+1)/a(i)) approaches the golden ratio. - Dale Gerdemann, Apr 23 2015
This sequence can be interpreted as counting colored, square-domino tilings of a 1xn board, where the number of colors available for a domino with k squares to the left is Fib(k+1) and the number of colors available for a square with k dominoes to the left is Fib(k-1). "Fib(n)" here is A000045 (Fibonacci), extended so that Fib(-1) = 1, Fib(0) = 0,... . As an example, let d be a domino, s be a square an consider the uncolored tilings of length 5: sssss, sssd, ssds, sdss, dsss, sdd, dsd, dds. Then, after each 's' or 'd', write the number of colors available: s1s1s1s1s1, s1s1s1d3, s1s1d2s0, s1d1s0s0, d1s0s0s0, s1d1d1, d1s0d1, d1d1s1. So the number of colorings for these tilings is: 1,3,0,0,0,1,0,1 and the total number of colored tilings is 6 (= a(5)). - Dale Gerdemann, Apr 30 2015
LINKS
FORMULA
a(n) = sum(fibonomial(k,n-k),k=ceiling(n/2)..n).
From Vaclav Kotesovec, Apr 29 2015: (Start)
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/8), where
c = 1.472885929099569314607134281503815932269629515265... if mod(n,4)=0,
c = 1.472782295338429619549807628338486893461428897618... if mod(n,4)=1 or 3,
c = 1.472678661577289942545896597162143392952724631588... if mod(n,4)=2.
Or c = Sum_{j} ((1+sqrt(5))/2)^(-2*(j+(1-cos(Pi*n/2))/4)^2) / A062073, where A062073 = 1.2267420107203532444176302... is the Fibonacci factorial constant.
(End)
a(n) = Sum_{k=ceiling(n/2)..n} A003266(k) / (A003266(2*k-n) * A003266(n-k)). - Vaclav Kotesovec, Apr 30 2015
MATHEMATICA
Table[Sum[Product[Fibonacci[k-j+1]/Fibonacci[j], {j, 1, n-k}], {k, Ceiling[n/2], n}], {n, 0, 30}] (* Vaclav Kotesovec, Apr 29 2015 *)
(* Or, since version 10 *) Table[Sum[Fibonorial[k]/Fibonorial[2k-n]/Fibonorial[n-k], {k, Ceiling[n/2], n}], {n, 0, 30}] (* Vaclav Kotesovec, Apr 30 2015 *)
(* List of the multiplicative constants from an asymptotic formula: *) {N[EllipticTheta[3, 0, GoldenRatio^(-2)]/QPochhammer[-(GoldenRatio^2)^(-1)], 80], N[Sum[GoldenRatio^(-2*(j + 1/4)^2), {j, -Infinity, Infinity}]/QPochhammer[-(GoldenRatio^2)^(-1)], 80], N[EllipticTheta[2, 0, GoldenRatio^(-2)]/QPochhammer[-(GoldenRatio^2)^(-1)], 80]} (* Vaclav Kotesovec, Apr 30 2015 *)
PROG
(Maxima) ffib(n):=prod(fib(k), k, 1, n);
fibonomial(n, k):=ffib(n)/(ffib(k)*ffib(n-k));
makelist(sum(fibonomial(k, n-k), k, ceiling(n/2), n), n, 0, 30);
CROSSREFS
Sequence in context: A346779 A153955 A074028 * A061894 A116684 A276057
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 02 2012
EXTENSIONS
a(14) corrected by Vaclav Kotesovec, Apr 29 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 02:30 EDT 2024. Contains 373468 sequences. (Running on oeis4.)