The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056569 Row sums of Fibonomial triangle A010048. 7
 1, 2, 3, 6, 14, 42, 158, 756, 4594, 35532, 349428, 4370436, 69532964, 1407280392, 36228710348, 1186337370456, 49415178236344, 2618246576596392, 176462813970065208, 15128228719573952976, 1649746715671916095304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675. FORMULA a(n)= sum(A010048(n, m), m=0..n); A010048(n, m)=: fibonomial(n, m). From Vaclav Kotesovec, Apr 30 2015: (Start) a(n) ~ c * ((1+sqrt(5))/2)^(n^2/4), where c = EllipticTheta[3,0,1/GoldenRatio] / QPochhammer[-1/GoldenRatio^2] = 2.082828701647012450835512317685120373906427048806222527375... if n is even, c = EllipticTheta[2,0,1/GoldenRatio] / QPochhammer[-1/GoldenRatio^2] = 2.082828691334156222136965926255238646603356514964103252122... if n is odd. Or c = Sum_{j} ((1+sqrt(5))/2)^(-(j+(1-(-1)^n)/4)^2) / A062073, where A062073 = 1.2267420107203532444176302... is the Fibonacci factorial constant. (End) MATHEMATICA Table[Sum[Product[Fibonacci[j], {j, 1, n}] / Product[Fibonacci[j], {j, 1, k}] / Product[Fibonacci[j], {j, 1, n-k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 30 2015 *) (* Or, since version 10 *) Table[Sum[Fibonorial[n]/Fibonorial[k]/Fibonorial[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 30 2015 *) Round@Table[Sum[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {k, 0, n}], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *) PROG (Maxima) ffib(n):=prod(fib(k), k, 1, n); fibonomial(n, k):=ffib(n)/(ffib(k)*ffib(n-k)); makelist(sum(fibonomial(n, k), k, 0, n), n, 0, 30); \\ Emanuele Munarini, Apr 02 2012 CROSSREFS Cf. A010048, A062073, A181926. Sequence in context: A098641 A188775 A015892 * A094468 A091285 A109459 Adjacent sequences:  A056566 A056567 A056568 * A056570 A056571 A056572 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jul 10 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 06:50 EST 2020. Contains 332159 sequences. (Running on oeis4.)