login
A180872
Decimal expansion of Wyler's constant.
1
0, 0, 7, 2, 9, 7, 3, 4, 8, 1, 3, 0, 0, 3, 1, 8, 3, 2, 1, 2, 8, 9, 5, 6, 9, 2, 2, 6, 0, 1, 3, 1, 6, 3, 7, 7, 2, 3, 8, 2, 3, 3, 5, 9, 2, 2, 5, 4, 6, 6, 7, 7, 9, 2, 5, 9, 8, 8, 0, 1, 5, 4, 0, 1, 9, 3, 3, 1, 5, 4, 9, 9, 0, 8, 6, 6, 2, 0, 3, 1, 6, 2, 2, 2, 8, 2, 7, 4, 9, 7, 6, 0, 9, 1, 7, 4, 0, 3, 7, 2, 0, 6, 4, 0, 3
OFFSET
0,3
COMMENTS
Named after the Swiss mathematician Armand Wyler. - Amiram Eldar, Jun 23 2021
REFERENCES
Armand Wyler, L'Espace Symetrique du Groupe des Equations de Maxwell, Comptes Rendus de l'Académie des Sciences, Sér. A-B, Vol. 269 (1969), pp. 743-745.
Armand Wyler, Les groupes des potentiels de Coulomb et de Yukawa, Comptes Rendus de l'Académie des Sciences, Sér. A, Vol. 271 (1971), pp. 186-188.
LINKS
Gloria B. Lubkin, A Mathematician's Version of the Fine-Structure Constant, Physics Today, Vol. 24, No. 8 (1971), pp. 17-19.
Eric Weisstein's World of Mathematics, Wyler's Constant.
FORMULA
Equals (3*3^(3/4))/(16*2^(3/4)*5^(1/4)*Pi^(11/4)).
EXAMPLE
0.00729734813003183212...
MATHEMATICA
Join[{0, 0}, RealDigits[(3*Surd[3^3, 4])/(16*Surd[2^3, 4]*Surd[5, 4]*Surd[Pi^11, 4]), 10, 120][[1]]] (* Harvey P. Dale, Dec 19 2016 *)
CROSSREFS
Cf. A180873.
Sequence in context: A277525 A154176 A156547 * A003673 A021141 A246948
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 22 2010
STATUS
approved