%I #13 Jun 23 2021 09:05:35
%S 0,0,7,2,9,7,3,4,8,1,3,0,0,3,1,8,3,2,1,2,8,9,5,6,9,2,2,6,0,1,3,1,6,3,
%T 7,7,2,3,8,2,3,3,5,9,2,2,5,4,6,6,7,7,9,2,5,9,8,8,0,1,5,4,0,1,9,3,3,1,
%U 5,4,9,9,0,8,6,6,2,0,3,1,6,2,2,2,8,2,7,4,9,7,6,0,9,1,7,4,0,3,7,2,0,6,4,0,3
%N Decimal expansion of Wyler's constant.
%C Named after the Swiss mathematician Armand Wyler. - _Amiram Eldar_, Jun 23 2021
%D Armand Wyler, L'Espace Symetrique du Groupe des Equations de Maxwell, Comptes Rendus de l'Académie des Sciences, Sér. A-B, Vol. 269 (1969), pp. 743-745.
%D Armand Wyler, Les groupes des potentiels de Coulomb et de Yukawa, Comptes Rendus de l'Académie des Sciences, Sér. A, Vol. 271 (1971), pp. 186-188.
%H Gloria B. Lubkin, <a href="https://doi.org/10.1063/1.3022875">A Mathematician's Version of the Fine-Structure Constant</a>, Physics Today, Vol. 24, No. 8 (1971), pp. 17-19.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WylersConstant.html">Wyler's Constant</a>.
%F Equals (3*3^(3/4))/(16*2^(3/4)*5^(1/4)*Pi^(11/4)).
%e 0.00729734813003183212...
%t Join[{0,0},RealDigits[(3*Surd[3^3,4])/(16*Surd[2^3,4]*Surd[5,4]*Surd[Pi^11,4]),10,120][[1]]] (* _Harvey P. Dale_, Dec 19 2016 *)
%Y Cf. A180873.
%K nonn,cons
%O 0,3
%A _Eric W. Weisstein_, Sep 22 2010