login
A180873
Decimal expansion of the reciprocal of Wyler's constant.
1
1, 3, 7, 0, 3, 6, 0, 8, 2, 4, 4, 8, 1, 6, 4, 3, 3, 7, 4, 4, 0, 1, 7, 6, 1, 6, 9, 1, 6, 8, 8, 7, 6, 7, 1, 5, 9, 1, 4, 3, 9, 7, 5, 9, 3, 9, 5, 7, 7, 6, 0, 7, 3, 3, 7, 6, 0, 8, 7, 1, 2, 9, 2, 1, 6, 7, 3, 0, 5, 7, 8, 7, 5, 9, 7, 1, 7, 3, 3, 3, 2, 3, 1, 3, 3, 7, 9, 6, 0, 7, 1, 9, 0, 4, 0, 5, 7, 9, 0
OFFSET
3,2
COMMENTS
This constant is very close to the fine structure constant A005600, but it seems unknown whether this is just a coincidence. - M. F. Hasler, Sep 19 2015
LINKS
Eric Weisstein's World of Mathematics, Wyler's Constant.
FORMULA
Equals (16*(2/3)^(3/4)*5^(1/4)*Pi^(11/4))/3.
EXAMPLE
137.03608244816433744...
MATHEMATICA
RealDigits[(16*(2/3)^(3/4)*5^(1/4)*Pi^(11/4))/3, 10, 120][[1]] (* Amiram Eldar, Jun 11 2023 *)
PROG
(PARI) 16/9*Pi^3/sqrtn(Pi/5!, 4) \\ M. F. Hasler, Sep 19 2015
CROSSREFS
Sequence in context: A124919 A033920 A005600 * A021031 A291835 A197835
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 22 2010
STATUS
approved