login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180217
a(n) = (n-th prime modulo 3) + (n-th prime modulo 4).
1
4, 3, 3, 4, 5, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 5, 2, 4, 5, 2, 4, 5, 3, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 5, 3, 5, 2, 5, 2, 3, 4, 4, 4, 5, 2, 3, 5, 2, 5, 3, 5, 3, 4, 2, 3, 4, 3, 4, 5, 2, 3, 4, 2, 5, 2, 3, 5, 4, 2, 4, 5, 3, 2, 3, 2, 5, 2, 5, 2, 4, 5, 3, 2, 3, 4, 5, 5, 4, 5, 4, 5, 3, 3, 4, 2, 4, 3
OFFSET
1,1
COMMENTS
a(n) = 2 iff prime(n) == 1 (mod 12); a(n) = 2 for prime(n) = 13, 37, 61, 73, 97, 109, ... (A068228).
a(n) = 5 iff prime(n) == 11 (mod 12); a(n) = 5 for prime(n) = 11, 23, 47, 59, 71, 83, ... (A068231).
For n > 2, a(n) = 3 iff prime(n) == 5 (mod 12); a(n) = 3 for prime(n) = 5, 17, 29, 41, 53, 89, ... (A040117).
For n > 2, a(n) = 4 iff prime(n) == 7 (mod 12); a(n) = 4 for prime(n) = 7, 19, 31, 43, 67, 79, ... (A068229).
MATHEMATICA
Mod[#, 3]+Mod[#, 4]&/@Prime[Range[110]] (* Harvey P. Dale, Nov 09 2011 *)
PROG
(Magma) A180217:=func< n | p mod 3 + p mod 4 where p is NthPrime(n) >; [ A180217(n): n in [1..105] ]; // Klaus Brockhaus, Jan 18 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 16 2011
STATUS
approved