OFFSET
0,2
COMMENTS
The Eulerian polynomials A(n,t) are here defined in accordance with the Digital Library of Mathematical Functions, Table 26.14.1.
Sums of 3 consecutive fifth powers: a(n) = (n-1)^5+n^5+(n+1)^5. - Bruno Berselli, Jun 24 2013
LINKS
OEIS Wiki, Eulerian polynomials.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
From Bruno Berselli, Jun 24 2013: (Start)
G.f.: (1 + 27*x + 93*x^2 + 118*x^3 + 93*x^4 + 27*x^5 + x^6) / (1 - x)^6.
a(n) = n*(3*n^4 + 20*n^2 + 10) for n>0, a(0)=1. (End)
a(0)=1, a(1)=33, a(2)=276, a(3)=1299, a(4)=4392, a(5)=11925, a(6)=27708; for n>6, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Apr 10 2015
MAPLE
gfA179995 := proc(t) local i;
add([1, 27, 93, 118, 93, 27, 1][i+1]*t^i, i=0..5)/(1-t)^6 end:
seq(coeff(series(gfA179995(t), t, 24), t, j), j=0..16);
MATHEMATICA
Join[{1}, Table[n (3 n^4 + 20 n^2 + 10), {n, 30}]] (* Bruno Berselli, Jun 24 2013 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 33, 276, 1299, 4392, 11925, 27708}, 30] (* Harvey P. Dale, Apr 10 2015 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+27*x+93*x^2+118*x^3+93*x^4+27*x^5+x^6)/(1-x)^6)); // Bruno Berselli, Jun 24 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Aug 05 2010
STATUS
approved