login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027602
a(n) = n^3 + (n+1)^3 + (n+2)^3.
13
9, 36, 99, 216, 405, 684, 1071, 1584, 2241, 3060, 4059, 5256, 6669, 8316, 10215, 12384, 14841, 17604, 20691, 24120, 27909, 32076, 36639, 41616, 47025, 52884, 59211, 66024, 73341, 81180, 89559, 98496, 108009, 118116, 128835, 140184
OFFSET
0,1
COMMENTS
a(3) = 216 = 6^3 (a cube). - Howard Berman (howard_berman(AT)hotmail.com), Nov 07 2008
Pairs [n,a(n)] for n<=10^7 such that a(n) is a perfect power are [0, 9], [1, 36], [3, 216], [23, 41616]. - Joerg Arndt, Jan 25 2011
Sums of three consecutive cubes. - Al Hakanson (hawkuu(AT)gmail.com), May 20 2009
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 1*a(n-4) for n>=4.
a(n) = 9*A006527(n+1). - Lekraj Beedassy, Feb 01 2007
a(n) = 3*n^3 + 9*n^2 + 15*n + 9.
G.f.: 9*(1+x^2)/(1-x)^4. - Bruno Berselli, Jan 21 2011
a(n) = A008585(n+1)*A059100(n+1). - Bruno Berselli, Jan 21 2011
E.g.f.: 3*(3 + 9*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 24 2022
Sum_{n>=0} 1/a(n) = (2*gamma + polygamma(0, 1-i*sqrt(2)) + polygamma(0, 1+i*sqrt(2)))/12 = 0.161383557127191633050394086192620963436504... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023
MATHEMATICA
f[n_]:=n^3; Table[f[n]+f[n+1]+f[n+2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
Table[3n^3+9n^2+15n+9, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {9, 36, 99, 216}, 40] (* Harvey P. Dale, Nov 27 2024 *)
PROG
(Sage) [i^3+(i+1)^3+(i+2)^3 for i in range(0, 48)] # Zerinvary Lajos, Jul 03 2008
(Magma) [3*n^3 + 9*n^2 + 15*n + 9: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=3*(n^3 + 3*n^2 + 5*n + 3) \\ Charles R Greathouse IV, Jun 11 2015
(Python)
A027602_list, m = [], [18, 0, 9, 9]
for _ in range(10**2):
A027602_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
KEYWORD
nonn,easy
STATUS
approved