login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179783
a(n) = 2*n*(n+1)*(n+2)/3 + (-1)^n.
1
1, 3, 17, 39, 81, 139, 225, 335, 481, 659, 881, 1143, 1457, 1819, 2241, 2719, 3265, 3875, 4561, 5319, 6161, 7083, 8097, 9199, 10401, 11699, 13105, 14615, 16241, 17979, 19841, 21823, 23937, 26179, 28561, 31079
OFFSET
0,2
COMMENTS
First differences in 2*A081352.
Second differences in 4*A004442.
FORMULA
G.f.: (1+10*x^2-4*x^3+x^4)/((1+x)*(1-x)^4); exp(-x)+(2/3)*exp(x)*x*(6+6*x+x^2).
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4.
a(n) = 4*A000292(n)+(-1)^n.
MATHEMATICA
LinearRecurrence[{3, -2, -2, 3, -1}, {1, 3, 17, 39, 81}, 40] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(Magma) [(2/3)*n*(n+1)*(n+2)+(-1)^n: n in [0..35]];
(PARI) for(n=0, 35, print1((2/3)*n*(n+1)*(n+2)+(-1)^n", "));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jul 29 2010 - Sep 07 2010
STATUS
approved