The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179406 Records of minima of positive distance d between a fifth power of positive integer x and a square of integer y such d = x^5 - y^2 (x != k^2 and y != k^5). 9
 7, 19, 60, 341, 47776, 70378, 78846, 115775, 220898, 780231, 2242100, 11889984, 26914479, 50406928, 77146256, 80117392, 284679759, 595974650, 2071791247, 7825152599, 67944824923, 742629277177, 1709838230002, 2676465117663 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Distance d is equal 0 when x = k^2 and y = k^5. For x values see A179407. For y values see A179408. Conjecture (from Artur Jasinski): For any positive number x >= A179407(n) distance d between fifth power of x and square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n). LINKS J. Blass, A Note on Diophantine Equation Y^2 + k = X^5, Math. Comp. 1976, Vol. 30, No. 135, pp. 638-640. A. Bremner, On the Equation Y^2 = X^5 + k, Experimental Mathematics 2008 Vol. 17, No. 3, pp. 371-374. MATHEMATICA max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd (* Artur Jasinski, Jul 13 2010 *) CROSSREFS Cf. A179107, A179108, A179109, A179386, A179387, A179388, A179407, A179408. Sequence in context: A155335 A155226 A229442 * A165683 A092359 A259797 Adjacent sequences:  A179403 A179404 A179405 * A179407 A179408 A179409 KEYWORD nonn,uned AUTHOR Artur Jasinski, Jul 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 11:29 EDT 2020. Contains 337289 sequences. (Running on oeis4.)