login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179409 The number of alive cells in Conway's Game of Life on the 8x8 toroidal grid, in a cyclic sequence of 48 patterns containing among other patterns, a "stairstep hexomino" and its mirror image, illustrated below. 10
6, 6, 6, 8, 10, 12, 16, 18, 20, 26, 26, 28, 30, 22, 26, 16, 20, 18, 18, 20, 16, 20, 10, 8, 6, 6, 6, 8, 10, 12, 16, 18, 20, 26, 26, 28, 30, 22, 26, 16, 20, 18, 18, 20, 16, 20, 10, 8, 6, 6, 6, 8, 10, 12, 16, 18, 20, 26, 26, 28, 30, 22, 26, 16, 20, 18, 18, 20, 16, 20, 10, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Period 24. The sequence begins (from offset 0) with its lexicographically earliest rotation. All terms are even because the initial pattern has an even number of cells and because it has 180-degree rotational symmetry.

The mean value of terms in the whole period of 24 is 16.9167.

LINKS

Table of n, a(n) for n=0..71.

A. Karttunen, J-program for computing the terms of this sequence

Stephen A. Silver, Life Lexicon, "stairstep hexomino"

EXAMPLE

The generations 0-3 of this cycle of patterns look as follows, thus a(0)=a(1)=a(2)=6 and a(3)=8.

. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .

. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .

. . o . . . . . | . . . . . . . . | . . o . . . . . | . . o o . . . .

. o . . o . . . | . o o o . . . . | . . o o . . . . | . . o . o . . .

. . o . . o . . | . . . o o o . . | . . . o o . . . | . . o . o . . .

. . . . o . . . | . . . . . . . . | . . . . o . . . | . . . o o . . .

. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .

. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .

(generation 0.) | (generation 1.) | (generation 2.) | (generation 3.)

..................................|stairstep hexomino................

generations 4-7 of this cycle of patterns look as follows, thus a(4)=10, a(5)=12, a(6)=16 and a(7)=18.

. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .

. . . . . . . . | . . . . . . . . | . . o . . . . . | . o o . . . . .

. . o o . . . . | . o o o . . . . | . o o o o . . . | . o o . o o . .

. o o . o . . . | . o . . o o . . | o . . . o o . . | o . . . o o . .

. . o . o o . . | . o o . . o . . | . o o . . . o . | . o o . . . o .

. . . o o . . . | . . . o o o . . | . . o o o o . . | . o o . o o . .

. . . . . . . . | . . . . . . . . | . . . . o . . . | . . . . o o . .

. . . . . . . . | . . . . . . . . | . . . . . . . . | . . . . . . . .

In generation 24 we obtain the initial pattern reflected over its central vertical axis, and for the generations 24--47 the patterns repeat the history of the first 24 generations, but reflected over its vertical axis, after which the whole cycle begins from the start again at the generation 48.

. . . . . . . . | . . . . . . . .

. . . . . . . . | . . . . . . . .

. . . . o . . . | . . . . . . . .

. . o . . o . . | . . . o o o . .

. o . . o . . . | . o o o . . . .

. . o . . . . . | . . . . . . . .

. . . . . . . . | . . . . . . . .

. . . . . . . . | . . . . . . . .

(generation 24) | (generation 25)

CROSSREFS

Cf. A179410, A179411.

Cf. also A179412 for a longer cyclic sequence of 132 patterns.

A179415 which traces the history of the same initial pattern on infinite square grid, differs from this one for the first time at n=14, where a(14)=26 while A179415(14)=32.

Sequence in context: A322345 A332559 A179415 * A186983 A046264 A291989

Adjacent sequences:  A179406 A179407 A179408 * A179410 A179411 A179412

KEYWORD

nonn

AUTHOR

Antti Karttunen, Jul 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 15:43 EDT 2020. Contains 335448 sequences. (Running on oeis4.)