login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178205
a(n) = a(n-1) + 10*a(n-3) for n > 2; a(0) = a(1) = a(2) = 1.
3
1, 1, 1, 11, 21, 31, 141, 351, 661, 2071, 5581, 12191, 32901, 88711, 210621, 539631, 1426741, 3532951, 8929261, 23196671, 58526181, 147818791, 379785501, 965047311, 2443235221, 6241090231, 15891563341, 40323915551, 102734817861
OFFSET
0,4
COMMENTS
If x=a(n), y=a(n+1), z=a(n+2), then 100*x^3 + 10*x^2*z - 30*x*y*z + 10*x*y^2 + 10*y^3 - 2*y*z^2 + y^2*z + z^3 = 10^(n+2), for n >= 0. - Alexander Samokrutov, Jul 03 2015
FORMULA
G.f.: 1/(1-x-10*x^3).
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1] + 10 a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 28}] (* or *)
CoefficientList[Series[1/(1 - x - 10 x^3), {x, 0, 28}], x] (* Michael De Vlieger, Jul 09 2015 *)
LinearRecurrence[{1, 0, 10}, {1, 1, 1}, 30] (* Vincenzo Librandi, Jul 19 2015 *)
PROG
(PARI) {m=29; v=concat([1, 1, 1], vector(m-3)); for(n=4, m, v[n]=v[n-1]+10*v[n-3]); v}
(Magma) I:=[1, 1, 1]; [n le 3 select I[n] else Self(n-1) + 10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 19 2015
(PARI) x='x+O('x^50); Vec(1/(1-x-10*x^3)) \\ G. C. Greubel, Apr 29 2017
CROSSREFS
Cf. A000930 (a(n)=a(n-1)+a(n-3), a(0)=a(1)=a(2)=1).
Sequence in context: A330286 A081927 A181178 * A239464 A180105 A288186
KEYWORD
nonn,easy
AUTHOR
Mark Dols, May 22 2010
EXTENSIONS
Edited and extended by Klaus Brockhaus, May 23 2010
STATUS
approved