login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + 10*a(n-3) for n > 2; a(0) = a(1) = a(2) = 1.
3

%I #31 Sep 08 2022 08:45:53

%S 1,1,1,11,21,31,141,351,661,2071,5581,12191,32901,88711,210621,539631,

%T 1426741,3532951,8929261,23196671,58526181,147818791,379785501,

%U 965047311,2443235221,6241090231,15891563341,40323915551,102734817861

%N a(n) = a(n-1) + 10*a(n-3) for n > 2; a(0) = a(1) = a(2) = 1.

%C If x=a(n), y=a(n+1), z=a(n+2), then 100*x^3 + 10*x^2*z - 30*x*y*z + 10*x*y^2 + 10*y^3 - 2*y*z^2 + y^2*z + z^3 = 10^(n+2), for n >= 0. - _Alexander Samokrutov_, Jul 03 2015

%H G. C. Greubel, <a href="/A178205/b178205.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,10).

%F G.f.: 1/(1-x-10*x^3).

%t RecurrenceTable[{a[n] == a[n - 1] + 10 a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 28}] (* or *)

%t CoefficientList[Series[1/(1 - x - 10 x^3), {x, 0, 28}], x] (* _Michael De Vlieger_, Jul 09 2015 *)

%t LinearRecurrence[{1, 0, 10}, {1, 1, 1}, 30] (* _Vincenzo Librandi_, Jul 19 2015 *)

%o (PARI) {m=29; v=concat([1, 1, 1], vector(m-3)); for(n=4, m, v[n]=v[n-1]+10*v[n-3]); v}

%o (Magma) I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + 10*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Jul 19 2015

%o (PARI) x='x+O('x^50); Vec(1/(1-x-10*x^3)) \\ _G. C. Greubel_, Apr 29 2017

%Y Cf. A000930 (a(n)=a(n-1)+a(n-3), a(0)=a(1)=a(2)=1).

%K nonn,easy

%O 0,4

%A _Mark Dols_, May 22 2010

%E Edited and extended by _Klaus Brockhaus_, May 23 2010