login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178207
a(n) = 4*n - 2*A000120(n) + 1 where A000120(n) = number of nonzero digits in the binary representation of n.
1
1, 3, 7, 9, 15, 17, 21, 23, 31, 33, 37, 39, 45, 47, 51, 53, 63, 65, 69, 71, 77, 79, 83, 85, 93, 95, 99, 101, 107, 109, 113, 115, 127, 129, 133, 135, 141, 143, 147, 149, 157, 159, 163, 165, 171, 173, 177, 179, 189, 191, 195, 197, 203, 205, 209, 211, 219, 221, 225, 227
OFFSET
0,2
COMMENTS
Baralic provides some evidence for the conjecture that each n-dimensional, compact smooth manifold M^n (n>1), admits a totally skew embedding in the Euclidean space of dimension N = 4n - 2alpha(n) + 1 where alpha(n) = number of nonzero digits in the binary representation of n. The subsequence of primes begins: 3, 7, 23, 31, 37, 47, 53, 71, 79, 83, 101, 107, 109, 113, 127, 149, 157. See also my note on the Whitney immersion theorem in A005187.
LINKS
Djordje Baralic, Branislav Prvulovic, Gordana Stojanovic, Sinisa Vrecica, Rade Zivaljevic, Topological obstructions to totally skew embeddings, arXiv:1005.3709 [math.AT], 2010.
FORMULA
a(n) = A008586(n) - 2*A000120(n) + 1.
a(0) = 1; a(n) = 2n + a(floor(n/2)). - Daniel Suteu, Jan 01 2016
G.f. A(x) satisfies A(x) = 2*x/(1-x)^2 + (1+x)*A(x^2). - Robert Israel, Jan 01 2016
EXAMPLE
a(0) = 4*1 - 2*A000120(0) + 1 = (4*0)-(2*0)+1 = 1.
a(1) = 4*1 - 2*A000120(1) + 1 = (4*1)-(2*1)+1 = 3 is prime.
a(2) = 4*2 - 2*A000120(2) + 1 = (4*2)-(2*1)+1 = 7 is prime.
a(3) = 4*3 - 2*A000120(3) + 1 = (4*3)-(2*2)+1 = 9.
a(4) = 4*4 - 2*A000120(4) + 1 = (4*4)-(2*1)+1 = 15.
a(5) = 4*5 - 2*A000120(5) + 1 = (4*5)-(2*2)+1 = 17 is prime.
MAPLE
read("transforms") ; A178207 := proc(n) 4*n-2*wt(n)+1 ; end proc: seq(A178207(n), n=0..120) ; # R. J. Mathar, May 24 2010
MATHEMATICA
Table[4 n - 2 Total@ IntegerDigits[n, 2] + 1, {n, 0, 59}] (* Michael De Vlieger, Jan 02 2016 *)
PROG
(PARI) a(n) = 4*n - 2*hammingweight(n) + 1; \\ Michel Marcus, Jan 02 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 22 2010
EXTENSIONS
17 inserted and sequence extended by R. J. Mathar, May 24 2010
STATUS
approved