login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178203
Smith numbers of order 5; composite numbers n such that sum of digits^5 equal sum of digits^5 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).
5
414966, 443166, 454266, 1274664, 1371372, 1701856, 1713732, 1734616, 1771248, 1858436, 1858616, 2075664, 2624976, 3606691, 3771031, 3771301, 4266914, 4414866, 4461786, 4605146, 4670576, 4710739, 5209663, 5281767, 5434572, 5836565, 5861712, 5871968, 6046357
OFFSET
1,1
LINKS
Patrick Costello, A new largest Smith number, Fibonacci Quarterly 40(4) (2002), 369-371.
Underwood Dudley, Smith numbers, Mathematics Magazine 67(1) (1994), 62-65.
S. S. Gupta, Smith Numbers, Mathematical Spectrum 37(1) (2004/5), 27-29.
S. S. Gupta, Smith Numbers.
Eric Weisstein's World of Mathematics, Smith number.
Wikipedia, Smith number.
A. Wilansky, Smith Numbers, Two-Year College Math. J. 13(1) (1982), p. 21.
Amin Witno, Another simple construction of Smith numbers, Missouri J. Math. Sci. 22(2) (2010), 97-101.
Amin Witno, Smith multiples of a class of primes with small digital sum, Thai Journal of Mathematics 14(2) (2016), 491-495.
EXAMPLE
a(10) = 1858436 = 2*2*29*37*433;
1^5 + 3^5 + 4^5 + 5^5 + 6^5 + 2*8^5 = 3*2^5 + 3*3^5 + 4^5 + 7^5 + 9^5 = 77705.
CROSSREFS
Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178193, A178204.
Sequence in context: A256732 A078519 A187171 * A152869 A251960 A234663
KEYWORD
nonn,base
AUTHOR
Paul Weisenhorn, Dec 19 2010
EXTENSIONS
a(21) corrected by Donovan Johnson, Jan 02 2013
STATUS
approved