Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Oct 22 2019 04:21:54
%S 414966,443166,454266,1274664,1371372,1701856,1713732,1734616,1771248,
%T 1858436,1858616,2075664,2624976,3606691,3771031,3771301,4266914,
%U 4414866,4461786,4605146,4670576,4710739,5209663,5281767,5434572,5836565,5861712,5871968,6046357
%N Smith numbers of order 5; composite numbers n such that sum of digits^5 equal sum of digits^5 of its prime factors without the numbers in A176670 that have the same digits as its prime factors (without the zero digits).
%H Donovan Johnson, <a href="/A178203/b178203.txt">Table of n, a(n) for n = 1..1000</a>
%H Patrick Costello, <a href="https://www.fq.math.ca/Scanned/40-4/costello.pdf">A new largest Smith number</a>, Fibonacci Quarterly 40(4) (2002), 369-371.
%H Underwood Dudley, <a href="https://www.jstor.org/stable/2690561">Smith numbers</a>, Mathematics Magazine 67(1) (1994), 62-65.
%H S. S. Gupta, <a href="http://www.appliedprobability.org/data/files/MS%20issues/Vol37_No1.pdf">Smith Numbers</a>, Mathematical Spectrum 37(1) (2004/5), 27-29.
%H S. S. Gupta, <a href="http://www.shyamsundergupta.com/smith.htm">Smith Numbers</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmithNumber.html">Smith number</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Smith_number">Smith number</a>.
%H A. Wilansky, <a href="https://www.jstor.org/stable/3026531">Smith Numbers</a>, Two-Year College Math. J. 13(1) (1982), p. 21.
%H Amin Witno, <a href="https://projecteuclid.org/euclid.mjms/1312233139">Another simple construction of Smith numbers</a>, Missouri J. Math. Sci. 22(2) (2010), 97-101.
%H Amin Witno, <a href="http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/952">Smith multiples of a class of primes with small digital sum</a>, Thai Journal of Mathematics 14(2) (2016), 491-495.
%e a(10) = 1858436 = 2*2*29*37*433;
%e 1^5 + 3^5 + 4^5 + 5^5 + 6^5 + 2*8^5 = 3*2^5 + 3*3^5 + 4^5 + 7^5 + 9^5 = 77705.
%Y Cf. A006753 (Smith numbers), A176670, A174460, A178213, A178193, A178204.
%K nonn,base
%O 1,1
%A _Paul Weisenhorn_, Dec 19 2010
%E a(21) corrected by _Donovan Johnson_, Jan 02 2013