login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177826
Sub-triangle of A060187: even-indexed entries of even-indexed rows.
0
1, 1, 1, 1, 230, 1, 1, 10543, 10543, 1, 1, 331612, 4675014, 331612, 1, 1, 9116141, 906923282, 906923282, 9116141, 1, 1, 237231970, 121383780207, 743288515164, 121383780207, 237231970, 1, 1, 6031771195, 13342139253321, 342917527152507, 342917527152507, 13342139253321, 6031771195, 1, 1
OFFSET
0,5
COMMENTS
Row sums are:{1, 2, 232, 21088, 5338240, 1832078848, 986530539520, 712531396354048,
686233400119951360, 838856713968361013248, 1275735509232452907827200,...}.
EXAMPLE
{1},
{1, 1},
{1, 230, 1},
{1, 10543, 10543, 1},
{1, 331612, 4675014, 331612, 1},
{1, 9116141, 906923282, 906923282, 9116141, 1},
MATHEMATICA
p[x_, n_] = (1 - x)^(n + 1)*Sum[((2*k + 1)^n)*x^k, {k, 0, Infinity}];
t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
Table[Table[t[n, 2*m], {m, 0, Floor[n/2]}], {n, 0, 20, 2}];
Flatten[%]
(*Alternative recursion for A060187*)
m = 2;
A[n_, 1] := 1
A[n_, n_] := 1
A[n_, k_] := A[n, k] = (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
Table[A[n, k], {n, 10}, {k, n}]]
(* Alternative expansion for A060187*)
p[t_] = Exp[t] *x/(-Exp[2*t] + x)
Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + \
1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]
CROSSREFS
Sequence in context: A178673 A028452 A072020 * A122269 A171666 A321503
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 13 2010
STATUS
approved