login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sub-triangle of A060187: even-indexed entries of even-indexed rows.
0

%I #8 Mar 12 2014 16:37:17

%S 1,1,1,1,230,1,1,10543,10543,1,1,331612,4675014,331612,1,1,9116141,

%T 906923282,906923282,9116141,1,1,237231970,121383780207,743288515164,

%U 121383780207,237231970,1,1,6031771195,13342139253321,342917527152507,342917527152507,13342139253321,6031771195,1,1

%N Sub-triangle of A060187: even-indexed entries of even-indexed rows.

%C Row sums are:{1, 2, 232, 21088, 5338240, 1832078848, 986530539520, 712531396354048,

%C 686233400119951360, 838856713968361013248, 1275735509232452907827200,...}.

%e {1},

%e {1, 1},

%e {1, 230, 1},

%e {1, 10543, 10543, 1},

%e {1, 331612, 4675014, 331612, 1},

%e {1, 9116141, 906923282, 906923282, 9116141, 1},

%t p[x_, n_] = (1 - x)^(n + 1)*Sum[((2*k + 1)^n)*x^k, {k, 0, Infinity}];

%t t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];

%t Table[Table[t[n, 2*m], {m, 0, Floor[n/2]}], {n, 0, 20, 2}];

%t Flatten[%]

%t (*Alternative recursion for A060187*)

%t m = 2;

%t A[n_, 1] := 1

%t A[n_, n_] := 1

%t A[n_, k_] := A[n, k] = (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]

%t Table[A[n,k],{n,10},{k,n}]]

%t (* Alternative expansion for A060187*)

%t p[t_] = Exp[t] *x/(-Exp[2*t] + x)

%t Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + \

%t 1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]

%Y Cf. A060187

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Dec 13 2010