login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177824
a(n) = (Fibonacci(n)*Fibonacci(n+7)) mod 7.
0
0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1, 0, 0, 6, 5, 1, 6, 2, 1
OFFSET
0,3
COMMENTS
The function f(k,n) = (Fibonacci(n)*Fibonacci(n+k)) mod k appears to be periodic. The repeated values for successive values of k are
k=2...[0,0,1]
k=3...[0,2,1,0]
k=4...[0,1,0,2,3,2]
k=5...[3,3,2,2,0,2,2,3,3,0]
k=6...[0,1,3,2,3,1,0,5,3,4,3,5]
k=7...[0,0,6,5,1,6,2,1]
k=8...[0,2,7,2,0,5]
k=9...[0,1,8,0,6,4,2,6,3,7,5,3]
k=10..[0,9,4,6,1,0,6,1,4,4,5,4,4,1,6,0,1,6,4,9,0,4,9,6,6,5,6,6,9,4]
Periodicity of 8.
MAPLE
with(combinat):
seq((fibonacci(n)*fibonacci(n+7)) mod 7, n=0..50);
MATHEMATICA
Table[Mod[Fibonacci[n]Fibonacci[n+7], 7], {n, 0, 100}] (* Harvey P. Dale, Oct 01 2017 *)
CROSSREFS
Sequence in context: A320833 A216582 A340543 * A242000 A238181 A197517
KEYWORD
nonn
AUTHOR
Gary Detlefs, Dec 13 2010
STATUS
approved