login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028452
Number of perfect matchings in graph P_{3} X P_{3} X P_{2n}.
4
1, 229, 117805, 64647289, 35669566217, 19690797527709, 10870506600976757, 6001202979497804657, 3313042830624031354513, 1829008840116358153050197, 1009728374600381843221483965, 557433823481589253332775648233, 307738670509229621147710358375321
OFFSET
0,2
COMMENTS
Also the number of tilings of a 3 x 3 x 2n box with 1 x 1 x 2 bricks. - Johan de Ruiter, Jul 15 2012
LINKS
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
James Propp, A reciprocity theorem for domino tilings, El. J. Combin. 8 (2001) #R18.
J. de Ruiter, Counting Domino Coverings and Chessboard Cycles, 2010. [Broken link]
FORMULA
From Johan de Ruiter, Jul 15 2012: (Start)
a(n) = 679a(n-1) -76177a(n-2) +3519127a(n-3) -85911555a(n-4) +1235863045a(n-5) -11123194131a(n-6) +65256474997a(n-7) -257866595482a(n-8) +705239311926a(n-9) -1363115167354a(n-10) +1888426032982a(n-11) -1888426032982a(n-12) +1363115167354a(n-13) -705239311926a(n-14) +257866595482a(n-15) -65256474997a(n-16) +11123194131a(n-17) -1235863045a(n-18) +85911555a(n-19) -3519127a(n-20) +76177a(n-21) -679a(n-22) +a(n-23).
G.f.: (x^18 -446x^17 +36701x^16 -1267416x^15 +22828288x^14 -235207768x^13 +1443564488x^12 -5338083112x^11 +11818867674x^10 -15460884436x^9 +11818867674x^8 -5338083112x^7 +1443564488x^6 -235207768x^5 +22828288x^4 -1267416x^3 +36701x^2 -446x +1)/(-x^19 +675x^18 -73471x^17 +3221189x^16 -72583272x^15 +925908264x^14 -6971103216x^13 +31523058272x^12 -86171526770x^11 +142604534086x^10 -142604534086x^9 +86171526770x^8 -31523058272x^7 +6971103216x^6 -925908264x^5 +72583272x^4 -3221189x^3 +73471x^2 -675x +1).
(End)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved