OFFSET
0,2
COMMENTS
Also the number of tilings of a 3 x 3 x 2n box with 1 x 1 x 2 bricks. - Johan de Ruiter, Jul 15 2012
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 [math.CO], (2014), eq (38).
James Propp, A reciprocity theorem for domino tilings, El. J. Combin. 8 (2001) #R18.
J. de Ruiter, Counting Domino Coverings and Chessboard Cycles, 2010. [Broken link]
FORMULA
From Johan de Ruiter, Jul 15 2012: (Start)
a(n) = 679a(n-1) -76177a(n-2) +3519127a(n-3) -85911555a(n-4) +1235863045a(n-5) -11123194131a(n-6) +65256474997a(n-7) -257866595482a(n-8) +705239311926a(n-9) -1363115167354a(n-10) +1888426032982a(n-11) -1888426032982a(n-12) +1363115167354a(n-13) -705239311926a(n-14) +257866595482a(n-15) -65256474997a(n-16) +11123194131a(n-17) -1235863045a(n-18) +85911555a(n-19) -3519127a(n-20) +76177a(n-21) -679a(n-22) +a(n-23).
G.f.: (x^18 -446x^17 +36701x^16 -1267416x^15 +22828288x^14 -235207768x^13 +1443564488x^12 -5338083112x^11 +11818867674x^10 -15460884436x^9 +11818867674x^8 -5338083112x^7 +1443564488x^6 -235207768x^5 +22828288x^4 -1267416x^3 +36701x^2 -446x +1)/(-x^19 +675x^18 -73471x^17 +3221189x^16 -72583272x^15 +925908264x^14 -6971103216x^13 +31523058272x^12 -86171526770x^11 +142604534086x^10 -142604534086x^9 +86171526770x^8 -31523058272x^7 +6971103216x^6 -925908264x^5 +72583272x^4 -3221189x^3 +73471x^2 -675x +1).
(End)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved