

A177739


In those partitions of n with every part >=3, the total number of parts (counted with multiplicity).


1



0, 0, 0, 1, 1, 1, 3, 3, 5, 8, 10, 13, 22, 25, 34, 49, 62, 77, 108, 132, 172, 221, 276, 345, 448, 544, 680, 851, 1050, 1280, 1596, 1931, 2366, 2884, 3496, 4220, 5135, 6144, 7403, 8890, 10644, 12679, 15177, 18007, 21419, 25399, 30066, 35488, 41971, 49344, 58088
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


COMMENTS

Also the number of components (counted with multiplicity) of the 2regular simple graphs of order n.


LINKS

Table of n, a(n) for n=0..50.


MATHEMATICA

Table[Length[Flatten[Select[IntegerPartitions[n], Min[#]>2&]]], {n, 0, 50}] (* Harvey P. Dale, May 12 2020 *)


PROG

(MAGMA) [ #&cat RestrictedPartitions(n, {3..n}):n in [0..50]];


CROSSREFS

The number of such partitions is given by A008483.
Lengths of the rows of triangle A176210.
Row sums of triangle A177740.
Cf. A006128, A138135.
Sequence in context: A333150 A342343 A116645 * A323581 A327731 A193744
Adjacent sequences: A177736 A177737 A177738 * A177740 A177741 A177742


KEYWORD

easy,nonn


AUTHOR

Jason Kimberley, May 13 2010


STATUS

approved



