login
A177728
Expansion of (1 + 14*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)).
1
1, 45, 1085, 20925, 366141, 6120765, 100080445, 1618667325, 26038501181, 417737748285, 6692790374205, 107156587499325, 1715081133346621, 27445904805580605, 439171333486530365, 7027036201446788925, 112434938199985606461, 1798977883220621905725
OFFSET
0,2
FORMULA
G.f.: (1 + 14*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)). - Colin Barker, Nov 27 2012
From Colin Barker, Jan 27 2018: (Start)
a(n) = (1/21)*((-1 + 2^(1+n))^2*(1-3*2^(2+n) + 2^(5+2*n))).
a(n) = 31*a(n-1) - 310*a(n-2) + 1240*a(n-3) - 1984*a(n-4) + 1024*a(n-5) for n>4.
(End)
PROG
(PARI) Vec((1 + 14*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)) + O(x^40)) \\ Colin Barker, Jan 27 2018
CROSSREFS
Sequence in context: A292209 A317895 A282929 * A265615 A320363 A140346
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 12 2010
EXTENSIONS
New name using g.f. given by Colin Barker from Joerg Arndt, Jan 27 2018
STATUS
approved