OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: Product_{n>=1} (1 - x^(7*n))^44/(1 - x^n)^45.
a(n) ~ exp(Pi*sqrt(542*n/21)) * sqrt(271) / (4*sqrt(3) * 7^(45/2) * n). - Vaclav Kotesovec, Nov 10 2017
MAPLE
N:= 30:
gN:= mul((1-x^(7*n))^44/(1-x^n)^45, n=1..N):
S:=series(gN, x, N+1):
seq(coeff(S, x, n), n=1..N); # Robert Israel, Nov 18 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^44/(1 - x^k)^45, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^44/(1 - x^j)^45)) \\ G. C. Greubel, Nov 18 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^44/(1 - x^j)^45: j in [1..m+2]]) )); // G. C. Greubel, Nov 18 2018
(Sage)
R = PowerSeriesRing(ZZ, 'x')
prec = 30
x = R.gen().O(prec)
s = prod((1 - x^(7*j))^44/(1 - x^j)^45 for j in (1..prec))
print(s.coefficients()) # G. C. Greubel, Nov 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 24 2017
STATUS
approved