login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + 14*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)).
1

%I #21 Jan 27 2018 13:31:15

%S 1,45,1085,20925,366141,6120765,100080445,1618667325,26038501181,

%T 417737748285,6692790374205,107156587499325,1715081133346621,

%U 27445904805580605,439171333486530365,7027036201446788925,112434938199985606461,1798977883220621905725

%N Expansion of (1 + 14*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)).

%H Colin Barker, <a href="/A177728/b177728.txt">Table of n, a(n) for n = 0..800</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (31,-310,1240,-1984,1024).

%F G.f.: (1 + 14*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)). - _Colin Barker_, Nov 27 2012

%F From _Colin Barker_, Jan 27 2018: (Start)

%F a(n) = (1/21)*((-1 + 2^(1+n))^2*(1-3*2^(2+n) + 2^(5+2*n))).

%F a(n) = 31*a(n-1) - 310*a(n-2) + 1240*a(n-3) - 1984*a(n-4) + 1024*a(n-5) for n>4.

%F (End)

%o (PARI) Vec((1 + 14*x) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)) + O(x^40)) \\ _Colin Barker_, Jan 27 2018

%K nonn,easy

%O 0,2

%A _Roger L. Bagula_, May 12 2010

%E New name using g.f. given by _Colin Barker_ from _Joerg Arndt_, Jan 27 2018