login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177492
Products of squares of 2 or more distinct primes.
6
36, 100, 196, 225, 441, 484, 676, 900, 1089, 1156, 1225, 1444, 1521, 1764, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 10404, 11025, 11236, 12100, 12321, 12996, 13225, 13924
OFFSET
1,1
LINKS
FORMULA
a(n) = A120944(n)^2. - R. J. Mathar, Dec 06 2010
EXAMPLE
36=2^2*3^2, 100=2^2*5*2, 196=2^2*7^2,..900=2^2*3^2*5^2,..
MAPLE
q:= n-> not isprime(n) and numtheory[issqrfree](n):
map(x-> x^2, select(q, [$4..120]))[]; # Alois P. Heinz, Aug 02 2024
MATHEMATICA
f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]>1&&f2[n]=={2}, AppendTo[lst, n]], {n, 0, 8!}]; lst
Reap[Do[{p, e} = Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={2}, Sow[n]], {n, 13225}]][[2, 1]]
(* Second program *)
Select[Range[120], And[CompositeQ[#], SquareFreeQ[#]] &]^2 (* Michael De Vlieger, Aug 17 2023 *)
PROG
(Python)
from math import isqrt
from sympy import primepi, mobius
def A177492(n):
def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n+1, f(n+1)
while m != k:
m, k = k, f(k)
return m**2 # Chai Wah Wu, Aug 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition corrected by R. J. Mathar, Dec 06 2010
STATUS
approved