%I #21 Aug 02 2024 21:24:25
%S 36,100,196,225,441,484,676,900,1089,1156,1225,1444,1521,1764,2116,
%T 2601,3025,3249,3364,3844,4225,4356,4761,4900,5476,5929,6084,6724,
%U 7225,7396,7569,8281,8649,8836,9025,10404,11025,11236,12100,12321,12996,13225,13924
%N Products of squares of 2 or more distinct primes.
%H Michael De Vlieger, <a href="/A177492/b177492.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A120944(n)^2. - _R. J. Mathar_, Dec 06 2010
%e 36=2^2*3^2, 100=2^2*5*2, 196=2^2*7^2,..900=2^2*3^2*5^2,..
%p q:= n-> not isprime(n) and numtheory[issqrfree](n):
%p map(x-> x^2, select(q, [$4..120]))[]; # _Alois P. Heinz_, Aug 02 2024
%t f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={2},AppendTo[lst,n]],{n,0,8!}];lst
%t Reap[Do[{p, e} = Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={2}, Sow[n]], {n, 13225}]][[2, 1]]
%t (* Second program *)
%t Select[Range[120], And[CompositeQ[#], SquareFreeQ[#]] &]^2 (* _Michael De Vlieger_, Aug 17 2023 *)
%o (Python)
%o from math import isqrt
%o from sympy import primepi, mobius
%o def A177492(n):
%o def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
%o m, k = n+1, f(n+1)
%o while m != k:
%o m, k = k, f(k)
%o return m**2 # _Chai Wah Wu_, Aug 02 2024
%Y Cf. A000469, A074985, A085986, A120944, A162142.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, May 10 2010
%E Definition corrected by _R. J. Mathar_, Dec 06 2010