login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177343
Number of times the n-th prime occurs in A039654.
4
1, 1, 1, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 4, 2, 4, 1, 1, 12, 1, 2, 3, 3, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 25, 1, 4, 2, 10, 1, 1, 1, 1, 3, 5, 1, 4, 10, 1, 7, 1, 8, 3, 2, 1, 1, 1, 4, 2, 5, 1, 1, 1, 1, 1, 1, 1, 18, 1, 1, 1, 10, 2, 1, 1, 1, 6, 1, 16, 4, 2, 2, 3, 1, 1, 1, 3, 11, 1, 2, 1, 18, 1, 2, 1, 1, 1, 3
OFFSET
1,5
COMMENTS
Record values for primes up to 10000:
n p(n) a(n)
1 2 1
5 11 3
9 23 4
20 71 12
39 167 25
132 743 58
236 1487 62
417 2879 71
675 5039 125
867 6719 168
The function A039653(n) = sigma(n)-1 iterated in A039654 satisfies A039653(n) >= n (with equality iff n is a prime), therefore the prime p cannot appear beyond index p in A039654, and it is sufficient to count how many times p = A039654(n) with n < p, cf. Formula. - M. F. Hasler, Sep 25 2017
FORMULA
a(n) = 1 + # { k < prime(n) | A039654(k) = prime(n) } . - M. F. Hasler, Sep 25 2017
PROG
(PARI) a(n)=sum(k=2, n=prime(n), A039654(k)==n) \\ M. F. Hasler, Sep 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved