login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177340
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(n(3n-1)/2).
1
1, 1, 2, 8, 41, 244, 1605, 11350, 84949, 666221, 5439193, 46026398, 402493943, 3630344538, 33731558974, 322633261521, 3175444787672, 32156075992687, 335029146470043, 3591545445240954, 39615629451300230, 449583342724740800
OFFSET
0,3
FORMULA
Let A = g.f. A(x), then A satisfies:
A = Sum_{n>=0} x^n*A^n*Product_{k=1..n} (1-x*A^(6k-5))/(1-x*A^(6k-2)) due to a q-series identity.
G.f. A(x) satisfies: A(x) = B(x/A(x)) and A(x*B(x)) = B(x) where B(x) = g.f. of A177341.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 244*x^5 + 1605*x^6 +...
A(x) = 1 + x*A(x) + x^2*A(x)^5 + x^3*A(x)^12 + x^4*A(x)^22 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^(j*(3*j-1)/2)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Cf. A177341.
Sequence in context: A333093 A217362 A294084 * A067119 A093935 A099240
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2010
STATUS
approved