Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 25 2017 15:33:04
%S 1,1,1,1,3,1,2,1,4,1,2,1,3,1,4,2,4,1,1,12,1,2,3,3,2,1,2,2,1,2,2,2,1,2,
%T 1,3,1,1,25,1,4,2,10,1,1,1,1,3,5,1,4,10,1,7,1,8,3,2,1,1,1,4,2,5,1,1,1,
%U 1,1,1,1,18,1,1,1,10,2,1,1,1,6,1,16,4,2,2,3,1,1,1,3,11,1,2,1,18,1,2,1,1,1,3
%N Number of times the n-th prime occurs in A039654.
%C Record values for primes up to 10000:
%C n p(n) a(n)
%C 1 2 1
%C 5 11 3
%C 9 23 4
%C 20 71 12
%C 39 167 25
%C 132 743 58
%C 236 1487 62
%C 417 2879 71
%C 675 5039 125
%C 867 6719 168
%C The function A039653(n) = sigma(n)-1 iterated in A039654 satisfies A039653(n) >= n (with equality iff n is a prime), therefore the prime p cannot appear beyond index p in A039654, and it is sufficient to count how many times p = A039654(n) with n < p, cf. Formula. - _M. F. Hasler_, Sep 25 2017
%H Franklin T. Adams-Watters, <a href="/A177343/b177343.txt">Table of n, a(n) for n=1..1229 (primes through 10000)</a>
%F a(n) = 1 + # { k < prime(n) | A039654(k) = prime(n) } . - _M. F. Hasler_, Sep 25 2017
%o (PARI) a(n)=sum(k=2,n=prime(n),A039654(k)==n) \\ _M. F. Hasler_, Sep 25 2017
%Y Cf. A039654, A039653, A292112, A292113.
%K nonn
%O 1,5
%A _Franklin T. Adams-Watters_, May 06 2010