login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177126
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=1 and l=1.
0
1, 10, 23, 150, 765, 5065, 32337, 223672, 1556583, 11178843, 81228819, 599868763, 4475307567, 33731219901, 256268778463, 1961208117130, 15101975890677, 116936866669157, 909887821312929, 7110983852617913, 55793178281433653
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=1).
Conjecture: n*(n+1)*a(n) -n*(7*n-2)*a(n-1) -3*n*(7*n-17)*a(n-2) +n*(83*n-250)*a(n-3) -84*n*(n-4)*a(n-4) +28*n*(n-5)*a(n-5) =0. - R. J. Mathar, Jul 24 2012
EXAMPLE
a(2)=2*10+2+1=23. a(3)=2*1*23+2+10^2+1+1=150.
MAPLE
l:=1: : k := 1 : m :=10: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 34); seq(d(n), n=0..32);
CROSSREFS
Cf. A177125.
Sequence in context: A196890 A219383 A250188 * A300150 A187621 A231880
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 03 2010
STATUS
approved