The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177126 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=1 and l=1. 0
 1, 10, 23, 150, 765, 5065, 32337, 223672, 1556583, 11178843, 81228819, 599868763, 4475307567, 33731219901, 256268778463, 1961208117130, 15101975890677, 116936866669157, 909887821312929, 7110983852617913, 55793178281433653 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=1). Conjecture: n*(n+1)*a(n) -n*(7*n-2)*a(n-1) -3*n*(7*n-17)*a(n-2) +n*(83*n-250)*a(n-3) -84*n*(n-4)*a(n-4) +28*n*(n-5)*a(n-5) =0. - R. J. Mathar, Jul 24 2012 EXAMPLE a(2)=2*10+2+1=23. a(3)=2*1*23+2+10^2+1+1=150. MAPLE l:=1: : k := 1 : m :=10: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od : taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 34); seq(d(n), n=0..32); CROSSREFS Cf. A177125. Sequence in context: A196890 A219383 A250188 * A300150 A187621 A231880 Adjacent sequences:  A177123 A177124 A177125 * A177127 A177128 A177129 KEYWORD easy,nonn AUTHOR Richard Choulet, May 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)