login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177129
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=8, k=0 and l=1.
1
1, 8, 17, 99, 471, 2816, 16535, 103942, 661447, 4327566, 28698915, 193214427, 1314753729, 9035450112, 62597834193, 436806174807, 3066961374135, 21653065678706, 153619938907211, 1094646596551549, 7830810922793173
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-19*n+43)*a(n-2) +48*(n-3)*a(n-3) +24*(-n+4)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(2)=2*1*8+1=17. a(3)=2*1*17+64+1=99.
MAPLE
l:=1: : k := 0 : m :=8: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);
CROSSREFS
Cf. A177128.
Sequence in context: A171065 A134790 A350683 * A177178 A357678 A097405
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 03 2010
STATUS
approved